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Abbreviations used: 
 
CN: cochlear nuclear complex,  
CNS: central nervous system, 
cRNA: complementary RNA,  
DNA: deoxyribonucleic acid, 
GO: gene ontology, 
IC: inferior colliculi, 
MA (plot): log ratio versus mean average (plot), 
mRNA: messenger RNA, 
PC: principal component, 
QI-QIV: quadrant I – quadrant IV, 
RNA: ribonucleic acid, 
RoB: rest of the brain, 
ROI: region of interest, 
SOC: superior olivary complex 
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Abstract 

Transcription, translation, and turnover of transcripts and proteins are essential for cellular 

function. The contribution of those factors to protein levels is under debate, as transcript levels 

and cognate protein levels do not necessarily correlate due to regulation of translation and 

protein turnover. Here we propose neuronal polarity as a third factor that is particularly evident 

in the CNS, leading to considerable distances between somata and axon terminals. 

Consequently, transcript levels may negatively correlate with cognate protein levels in CNS 

regions, i.e., transcript and protein levels behave reciprocally. To test this hypothesis, we 

analyzed three interconnected rat auditory brainstem regions and the rest of the brain as a 

reference. We obtained transcript and protein sets in these regions of interest (ROIs) by DNA 

microarrays and label-free mass spectrometry, and performed principal component and 

correlation analyses. We found 508 transcript|protein pairs and detected poor to moderate 

transcript|protein correlation in all ROIs, as evidenced by coefficients of determination 

between 0.34-0.54. We identified 57-80 negatively correlating gene products in the ROIs and 

intensively analyzed four of them for which the correlation was poorest. Three cognate 

proteins (Slc6a11, Syngr1, Tppp) were synaptic and hence candidates for a negative 

correlation because of protein transport into axon terminals. Thus, we systematically analyzed 

the negatively correlating gene products. GO analyses revealed overrepresented 

transport/synapse-related proteins, supporting our hypothesis. We present 30 

synapse/transport-related proteins displaying poor transcript|protein correlation. In conclusion, 

our analyses support that protein transport in polar cells is a third factor that influences the 

protein level and, thereby, the transcript|protein correlation. 
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Introduction 

Transcription, translation, and turnover of transcripts (mRNA) and proteins are essential for 

cellular function. How closely transcript levels correspond to protein abundance is a 

fundamental question in molecular biology (Nie et al. 2007, Liu et al. 2016). Mapping 

experiments demonstrated a poor correlation of expression levels at the transcriptome and 

the cognate proteome level (Gygi et al. 1999, Maier et al. 2009, Burkhart et al. 2012); see, 

however, (Lu et al. 2007)). To quantify correlation in a statistical way, the coefficient of 

determination (R2) is used to describe the degree of the variance in protein level that is 

predictable from the transcript level. A broad range of R2 values ranging from no correlation 

at all (R2 = 0) to good correlation (R2  0.9) has been described (e.g., R2 = 0.55; (Marguerat 

et al. 2012); R2 = 0.41; (Schwanhäusser et al. 2011, Jovanovic et al. 2015); R2 = 0.001-0.87, 

reviewed by (Waters et al. 2006)). Therefore, transcript levels are rather proxies for protein 

abundance (Gunawardana et al. 2015). That transcript and protein levels of the same gene 

do not always strongly correlate is explained by (1) regulation of translation (Schwanhäusser 

et al. 2011) and (2) protein stability (Geiger et al. 2013). According to Schwanhäusser and 

colleagues, regulation of translation plays the major role for determining the protein level 

from the transcript level, while protein stability plays a minor role. A third, not mutually 

exclusive explanation, forms the basis for the present study and is particularly evident in the 

nervous system. Hence, it could not be described in Schwanhäusser’s study employing 

fibroblasts. In the nervous system, neurons display a drastically polar morphology, which is 

evidenced by the fact that soma and axon terminals of a given neuron may be separated by 

several millimeters, if not tens of centimeters. Whereas transcript molecules usually reside in 

the soma, many proteins are transported into the axon terminals, which, in case of projection 

neurons, are often located in distant brain regions or the peripheral musculature (Fig. 1). We 

hypothesize that the anatomical and molecular polarity of (projection) neurons results in a 

considerable number of non-correlating and even negatively correlating gene products 

(those with opposing levels of transcript and protein; quadrants (Q) II and QIV in Fig. 1).  

Figure 1 near here 
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Fig. 1 Schematic illustration of the neuronal polarity hypothesis. Drawings at the bottom of 
each panel show a schematic neuron whose soma resides in region A. The axon, which may 
be < 1 mm to > 1 m long, projects into region B where it contacts the soma of a postsynaptic 
neuron. Proportions of cellular elements are distorted for the purpose of clarity. Transcripts 
(blue), proteins (green), and the cell nuclei (brown) are also shown. Diagrams at the top of 
each panel depict exemplary levels of the transcript and the cognate protein in region A and 
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B. (a) A region-typical somatic protein shows a high transcript|protein correlation; either it 
appears in QI (both levels high) or in QIII (both levels low). (b) Trafficking of a region-typical 
protein into the remote axon terminal in region B causes negative correlation of 
transcript|protein. Therefore, it appears either in QII (protein high, transcript low) or in QIV 
(protein low, transcript high). (c) A ubiquitously and high-abundant protein, in contrast to a 
region-typical protein of (a) and (b), that is transported into the axon terminal, results in a 
high transcript|protein correlation in region A and region B, and, consequently, a dot in QI. 

 

When disregarding different half-lives of molecules, translational regulation, and transport 

effects in polar neurons, transcript and protein levels likely correlate strongly (Fig. 1a). 

Transport processes, however, that separate the protein spatially from the transcript, may 

cause poor correlation (Fig. 1b). Notably, protein transport affects the transcript|protein 

correlation only for gene products that are higher abundant in specific regions, in the 

following called region-typical gene products (compare regions A and B in Fig. 1b), because 

the protein is transported into a region with low transcript level of the cognate protein, 

creating a negative correlation. In contrast, the transcript|protein correlation of widely 

expressed gene products should be less affected by protein transport (Fig. 1c), unless 

presynaptic axon terminals and postsynaptic somata are separated prior to analysis.  

In order to study the peculiarities of neuronal polarity in terms of transcript|protein 

correlation, we aimed to perform transcriptomics and proteomics experiments in 

interconnected brain regions. The mammalian brainstem appeared appropriate to us as it 

contains a multitude of nuclei which are gathered together in highly interconnected 

complexes (Malmierca and Hackett 2010, Schofield 2010), such as the cochlear nuclear 

complex (CN), the superior olivary complex (SOC), and the inferior colliculi (IC). Recently, 

we have described region-typical proteins in these brainstem regions in a proteomic shotgun 

approach (Moritz et al. 2015). Because of the neuronal polarity, we hypothesize that 

negatively correlating transcript|protein pairs are likely in these regions. In order to address 

our hypothesis and to identify negatively correlating transcript|protein pairs, we here 

analyzed the transcriptome and proteome of the CN, SOC, and IC. We included the rest of 

the brain (RoB) as a fourth and more general region. The transcriptome was enclosed by 

DNA microarrays to measure transcript levels, and the proteome was analyzed by label-free 

quantitative proteomics (Distler et al. 2014).  

Vogel and Marcotte (2012) suggested categorizing transcriptomic|proteomic studies with 

the following key concepts. 1) Absolute concentrations (amount per unit) versus relative 

concentrations (ratios of two absolute concentrations) of transcripts and proteins; 2) rates (of 

a process such as translation) versus concentrations (relative or absolute amounts); 3) 

steady-state (zero net change of gene products) versus non-steady-state (perturbed by a 

stimulus) systems; 4) single cell versus population analysis. Our approach addressed 
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relative concentrations of transcripts and proteins, steady-state (unperturbed) conditions, 

and cell populations. Several studies reporting a good transcript|protein correlation have 

focused on cell cultures such as yeast, E. coli or fibroblasts, where cell polarity is virtually 

absent (Futcher et al. 1999, Greenbaum et al. 2003, Lu et al. 2007). In contrast, our study 

has addressed interconnected brain regions. We found negatively correlating gene products 

that indicate neuronal cell polarity as a potential cause of reduced transcript|protein 

correlation in brain tissue. 
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Materials and methods 

Animals and tissue preparation 

Animal treatment was in accordance with the German law for conducting animal experiments 

(Tierschutzgesetz) and followed the NIH guide for the care and use of laboratory animals. 

We utilized 60(+/-3)-day-old Sprague-Dawley rats of both sexes purchased from Charles 

River (Sulzfeld, Germany). As the compared brain regions were prepared from the same 

cohort of rats, no randomization was necessary. As we used objective quantitative data, no 

blinding was necessary. 

 

Protein analysis 

Tissue preparation and protein analytics: 

We reused the protein data from our published proteomics project, of which relevant 

materials and methods were described in detail (Moritz et al. 2015). In brief, we extracted 

proteins from CN, SOC, IC, and RoB tissue and digested them with trypsin. Peptides were 

separated by nanoscale reversed phase UPLC using a nanoAcquity system (Waters 

Corporation) and analyzed per mass spectrometry using a Q-TOF Premier mass 

spectrometer (Waters Corporation). For each ROI, three biological replicates were prepared, 

each comprising tissue pooled over six animals, and each biological replicate was measured 

in four technical replicates, resulting in 12 replicates (n=12). 

 

Transcript analysis 

Tissue preparation for microarray experiments: 

Brain tissue was obtained as described (Ehmann et al. 2013, Kaltwaßer et al. 2013, Moritz et 

al. 2015). Tissue samples were stored in RNAlater® (ThermoFisher Scientific, Dreieich, 

Germany) until further use. All steps were performed using RNAse-free instruments or the 

equipment was cleaned using RNase AWAY (ThermoFisher Scientific). 

 

Total RNA isolation: 

Total RNA from the four ROIs was purified using RNeasy Mini (CN, SOC, IC) or Midi (RoB) 

(Qiagen GmbH, Hilden, Germany) following manufacturer’s instructions. In brief, brain 

tissues of two individuals were combined and homogenized in 1 mL (Mini Kit) or 4 mL (Midi 

Kit) phenol using an MICCRA D-8 (MICCRA GmbH, Müllheim, Germany) and mixed 

afterwards with 200 µL or 1 mL chloroform, respectively. After centrifugation (Biofuge fresco, 

Heraeus, Hanau, Germany, 13,700 × g, 15 min, 4°C or Multifuge 1S-R, ThermoFisher 

Scientific, 4,618 × g, 19 min, 4°C), the top phase was diluted with an equal volume of 70% 

ethanol, applied to spin columns, and concentrated (13,700 × g, 15 s, or 4,618 × g, 15 s). 
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DNA was digested on-column prior to elution of the RNA with RNase-free water. The quality 

of the RNA was monitored using Bioanalyzer Expert 2100 and Agilent RNA 600 Pico Kit 

(Agilent Technologies, Santa Clara, USA).  

 

Microarray experiments: 

1,000 ng of RNA were amplified and labeled using the Quick Amp Labeling Kit, two-color 

(Agilent Technologies) and purified using RNAeasy Lipid Tissue Min Kit (Qiagen GmbH) 

according to the manufacturer’s instructions. To review the yield and the dye incorporation, 

samples were analyzed using a NanoDrop ND-1000 UV-visible spectrophotometer (Peqlab, 

Erlangen, Germany). Hybridization of the fluorescently labeled cRNA was performed on 

whole genome, 60-mer sequence nucleotide microarrays from Agilent Technologies 

(G4131F, 4 x 44,000), containing 41,012 rat genes, expressed sequence tags or predicted 

genes. We hybridized 825 ng of cRNA samples of CN, SOC, IC, and RoB twice in dye swap 

experiments (Suppl. Fig 1). Slides were scanned on a Microarray Scanner (G2505, Agilent 

Technologies). We analyzed five biological replicates for each ROI, each with two technical 

replicates, resulting in 10 replicates (n=10). 

 

Array data extraction and normalization: 

For further analyses, we extracted the median signal intensities of all coding regions and 

RNA genes. Data were log2 transformed and then background-corrected by subtracting the 

minima of the background intensities of the dot and its eight neighbors. Variance stabilization 

and normalization were performed with the vsn packages (Huber et al. 2002) of the R 

software environment (RDevelopmentCoreTeam 2011). The loess method was applied for 

normalizing within the arrays and a 0.8 quantile normalization for normalizing between the 

arrays. For each probe, set outliers were removed by boxplot statistics (± 1.5 interquartile 

range), and outlier-removed probe intensities were averaged in a robust way by computing 

the Tukey’s biweight. 

 

Data availability 

Both data sets (transcriptome and proteome) are available as supplementary tables (Suppl. 

Tab. 1 and 2). 

 

General statistical analysis 

Transcripts and proteins were analyzed using BioFSharp and FSharp.Stats 

(https://github.com/CSBiology/). Protein data were normalized by shifting the samples to an 

equal median under the assumption that the overall protein content was kept constant after 

https://github.com/CSBiology/
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log2 transformation. Transcript and protein quantities of the different brain regions were 

compared by using limma (Lim et al. 2005). The test for significance, we used a p ≤ 0.05 and 

false discovery rate control (Benjamini and Hochberg 1995). Principal component (PC) 

analysis was performed over the single replicates (n = 10 for transcriptome, n = 12 for 

proteome), and the principal component loadings responsible for the main source of 

variation were selected for presentation. In order to calculate the association between the 

protein abundancies on their respective transcripts abundancies, we performed a linear 

regression analysis in log2 space after z-score transformation. As we excluded proteins with 

missing intensity data from further quantitative protein analysis, all proteins in the data set 

(n = 508) appear in each of the four brain regions. Sample sizes were not statistically 

predetermined, because finding significant level differences was not the focus of our study. 

Outliers were not excluded.  

 

GO term enrichment analysis 

GO terms describing ‘Biological processes’ and ‘Cellular components’ were obtained from 

the Rat Genome Database (http://rgd.mcw.edu/) and assigned to all 508 identified transcript-

protein pairs. Analysis of overrepresentation of certain functional categories was done using 

hypergeometric formulation of the null hypothesis to test that the particularly linear 

relationship between transcript and protein quantity and its belonging to an annotation 

category is statistically independent (Rivals et al. 2007). P values were adjusted according to 

Benjamini and Hochberg (1995), and the significance threshold was set to p ≤ 0.01. 

  

http://rgd.mcw.edu/
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Results 

Quality control 

In a first step toward quality controlling our DNA microarray data concerning comparability of 

the red Cy3- and the green Cy5-labeled samples, we inspected density plots of probe 

intensities and MA plots (i.e., plotting signal ratio versus mean). Those plots allowed us to 

visualize the differences between signal intensities obtained for the two labels (Dudoit et al. 

2002, Yang et al. 2002, Bolstad et al. 2003). As demonstrated by the density plots, 

distribution of red and green signal intensities was similar, yet red signals emerged less 

densely in the low intensity range and were slightly shifted to the right (Suppl. Fig. 2a-c). 

This implies that Cy3/5-labeling of the transcripts introduced a quantification bias to the non-

normalized data. A bias toward positive signal ratios was further evident in the MA plots 

(Suppl. Fig. 2d). After local regression (loess) and quantile normalization, density plots of the 

two dyes matched nearly perfectly (Suppl. Fig. 2c) and the MA plot spread around an 

expected ratio of 1 (Suppl. Fig. 2e). As proteins were unlabeled for quantification, systematic 

bias was unlikely for these samples. Nevertheless, we normalized the protein levels by 

shifting the sum of all protein levels among the samples to an equal median.  

In a further step toward quality control, we assessed the transcriptome and the proteome 

data by means of a PC analysis. This revealed the similarity in the respective molecular 

expression pattern between the different samples summarized as a single dot per sample 

within a principle component space. On the technical site, the single replicates (n = 10 for 

transcriptome, n = 12 for proteome) of the four ROIs clustered together, thereby 

demonstrating the experimental quality and reproducibility (Fig. 2). The proteome data 

clustered more densely than the transcriptome data, which is in agreement with recently 

published results for human brain regions (Carlyle et al. 2017). To us, the difference 

between proteomic and transcriptomic data indicates a lesser variance of the protein levels 

or of the mass spectrometry compared to the transcriptome data. On the biological side, the 

datasets showed that the physical location of the different ROIs is reflected by the molecular 

expression pattern on both the transcriptome and the proteome system level. In addition, this 

is in line with their functional similarities: CN and SOC neurons perform similar basic 

computations in the medulla oblongata, whereas the IC is an integrating center in the 

mesencephalon, and RoB is mainly non-auditory (Moritz et al. 2015). Even though the 

functional and physical proximity reflected within the molecular expression pattern appears 

at both the transcriptome and the proteome level, the difference in clustering of the sample 

dots indicates systematic differences between these two expression levels. We will further 

address these differences in the next chapter. 



12 
 

Figure 2 near here 

 

Fig. 2 Principal component (PC) analysis of the ROIs´ (a) transcriptome and (b) proteome 
data. We performed the PC analysis on normalized microarray signal intensity and the 
normalized mass spectrometry peak areas as a proxy for protein quantity. Each dot 
represents the data set of one replicate sample (n = 10 for transcriptome, n = 12 for 
proteome; several dots overlap). Coordinates show the relative location of the samples in the 
PC space of PC1 versus PC2, carrying the highest variance depicted in percent of variance 
in brackets. 

 

Correlation of transcript levels versus protein levels 

To analyze differences between transcriptomes and proteomes in more detail, we next 

plotted the protein level against the cognate transcript level for each of the four ROIs. 

Results are illustrated in Figure 3, where each panel comprises 508 gene products and each 

dot represents a single gene product for which we quantified the transcript as well as the 

level of the cognate protein (cf. (Tian et al. 2004)). Dot coordinates specify the normalized 

levels, with zero illustrating the median. A perfect correlation between transcript and protein 

levels would result in a diagonal arrangement of the dots with a slope of +1. In fact, 

correlations between transcript|protein pairs for each ROI revealed clouds that lacked a clear 

linearity. Consequently, R2 values were quite small, ranging from 0.34 (RoB) to 0.54 (SOC), 

implying poor to moderate correlation (Fig. 3a-d). A remarkably high number of gene 

products showed negatively correlating patterns (QII and QIV in Fig. 3). To analyze this 

interesting set of gene products in further depth, we specified the terms “correlating” and 

“negatively correlating”. For this purpose, we extracted the gene products that displayed log2 

values of ≥0.5 or ≤-0.5. “High” or “low” levels thus represent log2 values of ≥0.5 or ≤-0.5, 

respectively (Fig. 3a-d). Consequently, black dots in QII depict candidates with low transcript 

level but high protein level, whereas dots in QIV have a high transcript but low protein level. 
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Likewise, dots in QI and QIII show correlating gene expression patterns, i.e., both transcript 

and protein level were either high (QI) or low (QIII). Most gene products did not fulfill the 

0.5 log2 criteria and were therefore excluded from further analysis (gray dots in Fig. 3a-d; 

gray values in E-H). In detail, their exact numbers amounted to 316 (62.2%) for the CN, 313 

(61.6%) for the SOC, 312 (61.4%) for the IC, and 303 (59.6%) for RoB (Fig. 3e-h). Amongst 

the gene products that fulfilled the 0.5 log2 criteria, 63 (12.4%) were negatively correlating in 

the CN and 129 (25.4%) were correlating (Fig. 3e). Similarly, 57 gene products (11.2%) were 

negatively correlating in the SOC and 138 (27.2%) were correlating (Fig. 3f). Respective 

numbers in the IC were 63 (12.4%) and 133 (26.2%; Fig. 3g) and in RoB 80 (15.7%) and 

125 (24.6%; Fig. 3h). Hence, in each ROI, the number of negatively correlating gene 

products was only 2-fold lower than that of the correlating ones (range: 1.6-2.4-fold). 

According to our hypothesis, we found a considerable number (57-80) of negatively 

correlating gene products among the ROIs. 

Figure 3 near here 
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Fig. 3 Scatter plots of normalized transcript versus protein level (log2) within the four ROIs. 
(a-d) Dots represent 508 gene products in each panel. Coordinates show the normalized 
transcript and protein levels in CN, SOC, IC, and RoB; zero is the median of each dot cloud. 
Linear regression coefficients (R2) demonstrate a low to moderate degree of correlation. 
Dots with ≥0.5 logs to either side of zero (thresholds marked by gray lines) are highlighted in 
black. Dots in QI and QIII depict positive transcript|protein correlation, those in QII and QIV 
depict negative transcript|protein correlations. For example, the arrow-marked dot  in QII of 
panel (a) marks a gene product for which the transcript level was -2.05, but the protein level 
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+1.44. (e-h) Numbers of black dots (≥0.5 logs to either side of zero) in the four quadrants 
and of gray dots (≤0.5 logs to either side of zero) are provided in the miniaturized diagrams. 

 

Identification of gene products displaying the strongest negative transcript|protein 

correlation   

In order to identify gene products hindering better correlation, we selected the strongest 

negatively correlating candidates, i.e., protein genes of QII and QIV that are the farthest 

away from the slope 1-diagonal. To do so, we filtered the data clouds of Figure 3 with two 

different stringency criteria: transcript levels vs. protein levels of <-1.6 vs. >1.6; <-1.322 vs. 

>1.322 (QII). These values are logarithmized and correspond to factors of 3-fold and 2.5-fold 

above versus below the mean of all gene products (zero on the log-scale of Fig. 3). 

Corresponding, yet inverse stringency levels were used for QIV <1.6 vs. >-1.6; <1.322 vs. >-

1.322). No gene product was filtered via these latter criteria. High stringency (<-1.6/ >1.6) 

resulted in phosphatidate cytidylyltransferase 2 (Cds2) and sodium- and chloride-dependent 

GABA transporter 3 (Slc6a11) as the strongest negatively correlating of SOC and IC, 

respectively. Lower stringency (<-1.322/ >1.322) resulted in Cds2 for CN, SOC, and IC, 

tubulin polymerization-promoting protein (Tppp) for IC and RoB, as well as synaptogyrin-1 

(Syngr1) and Slc6a11 for IC (Table 1). 

To our knowledge, subsets of negatively correlating gene products have rarely been 

addressed in the literature. Hence, to find out whether the four gene products with the 

strongest negative correlation support our hypothesis, we inspected them regarding a 

destination for the cell periphery. This was done by checking the cellular component 

annotated in gene ontology (GO) and screened literature. Indeed, two of the four proteins 

(those encoded by the genes Slc6a11 and Syngr1; for reasons of uniformity, we use gene 

names) are present in cell projection or synaptic vesicles/cell junctions, according to GO. 

Further literature screening revealed hints for even three of the four proteins (Slc6a11, 

Syngr1, Tppp), that they are located at distal processes, such as synapses or neuropil 

(Table 2). Different distribution of transcript and protein was described for Syngr3, another 

family member of the synaptogyrins. In detail, transcript absence has been described in the 

hippocampal CA3 region, in contrast to a strong presence of the protein (Belizaire et al. 

2004). Only for Cds2, there was no hint for being transport-relevant (Table 2).  
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Table 1: Identification of gene products displaying the strongest negative transcript|protein 
correlation in the four ROIs 

transcript 
level/ protein 

level* 
CN SOC IC RoB 

< -1.6/ >1.6   Cds2 Slc6a11   

< -1.322/ 
>1.322 

Cds2 Cds2 

Syngr1, 
Cds2, 
Tppp, 

Slc6a11  

Tppp 

The log2 values provided in the table correspond to factors 0.333/3 and 0.4/2.5. 

 

 

 

Table 2: Detailed analysis of the four genes displaying the strongest negative 
transcript|protein correlation (cf. Table 1). 

  

(Melone et al. 2015); (Baumert et al. 1990); (Takahashi et al. 1993); (Frykman et al. 2012) 

     

 

These results motivated us to systematically test our hypothesis by characterizing all gene 

products of the four quadrants (black dots in Fig. 3). If our hypothesis is correct, a 

considerable number of gene products with negative transcript|protein correlation (in QII and 

QIV) may be affected by transport processes due to neuronal polarity. 
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Cds2

Phosphatidate 

cytidylyltransferase 2 51.3 6 none

Slc6a11

Sodium- and chloride-

dependent GABA transporter 3 x x 69.9 12

50% Synaptic location (including glial 

processes):  ~25% in axon terminal, 70% 

distal atrocytic processes

Melone et al . 

2015

Syngr1 Synaptogyrin-1 x x x 25.7 4

selectively present in synaptic vesicle 

membrane and Golgi apparatus

Baumert et al . 

2015

Tppp

Tubulin polymerization-

promoting protein 23.6 0

apart from oligodendrocytes, detected in 

neuropil and synapses

Frykman et al. 

2012; Takahashi 

et al . 1993
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Systematic evaluation of neuronal polarity hypothesis 

To evaluate our hypothesis for each of the four ROIs, we aimed to find out whether proteins 

that are transported to distal parts of the neurons, such as axon terminals, were 

overrepresented among the negatively correlating gene products. To do so, each gene 

product depicted in Figure 3 was allocated to its ’Biological processes’ and ‘Cellular 

components’ according to GO. As “transported proteins” is not a distinct GO category, we 

searched for biological processes containing the word “transport”, such as “vesicle mediated 

transport” or “protein transport” or related to synaptic structures such as “G-protein coupled 

receptor protein pathway”. Likewise, regarding the cellular components, we searched for 

terms related to peripheral structures, such as “synapse” or “projection”. For both ontologies, 

we summarized these terms as “transport/synapse-related” in the following paragraphs as 

well as Figures 4 and 5. The third ontology, “molecular function” has not been applied for this 

analysis, because it does not allow a relation to transported proteins. Note that we have 

categorized the biological process “G-protein coupled receptor protein pathway” and the 

cellular component “dendritic shaft” to the “transport/synapse-related” category, as we must 

consider that dendrites can be regionally separated from the soma, similar to axonal 

terminals. Based on these data, we performed an enrichment analysis to identify all 

biological processes and cellular components with significant overrepresentation in a 

quadrant (p ≤ 0.01). In detail, we calculated the percentage of gene products assigned to a 

given GO term for each individual quadrant and for the whole set of 508 gene products. 

Next, we determined whether the percentage in an individual quadrant was significantly 

higher (p≤0.01) than in the complete set of gene products. For example, 4 (11.7%) of the 34 

gene products in QII of CN belonged to the biological process “vesicle-mediated transport”, 

significantly more than the 20 (3.9%) of the whole set of 508 gene products. Hence, the 

process “vesicle-mediated transport” was overrepresented among the gene products 

displaying low transcript levels and high protein levels in the CN (Fig. 4a). Along this line, the 

processes “G-protein coupled receptor protein pathway” and “response to drug” were also 

overrepresented in the same cohort of gene products. Interestingly, “vesicle-mediated 

transport” was overrepresented in QII – but in none of the other quadrants – of all four ROIs 

(Fig. 4a-d), which supports our hypothesis. In other words, the set of gene products showing 

high protein but low transcript levels in all ROIs contains a significant number of proteins 

involved in vesicle-mediated transport processes. Likewise, “glycolytic process”, 

“gluconeogenesis”, “protein targeting”, “carbohydrate metabolic process”, “substantia nigra 

development”, “translational elongation”, and “sodium ion transmembrane transport“ were 

overrepresented in QI of all ROIs and “small GTPase mediated signal transduction” in QIII of 

all ROIs. No group of gene products was significantly overrepresented in QIV of all ROIs 



18 
 

(Fig. 4). In total, 50-100% (2/4 to 2/2) of the overrepresented biological process terms in QII 

of all ROIs belonged to GO terms related to transport/synapse (cyan-marked in Fig. 4). 

Figure 4 near here 
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Fig. 4 Gene ontology (GO) analysis of overrepresented ‘Biological processes’ amongst the 
data sets of positively correlating (QI and QIII) and negatively correlating (QII and QIV) gene 
products. (a-d) Overrepresented GO biological process terms of CN, SOC, IC, and RoB are 
listed in the appropriate quadrants. For example, the term “vesicle-mediated transport” can 
be allocated to a significantly bigger part of the 34 gene products of QII in Figure 3a than to 
all 508 gene products (p ≤ 0.01). Transport/synapse-related terms are shown in cyan. 
Numbers in brackets: number of gene products allocated to the GO term in the 
corresponding quadrant / number of gene products allocated to the GO term among all 508 
gene products / p-value. 

 

Figure 5 is arranged like Figure 4, but focuses on the ontology “Cellular components”. 

Here, fewer GO terms were significantly overrepresented in each quadrant. None of the GO 

terms was overrepresented consistently in all of the four ROIs. Nevertheless, gene products 

associated with the synapse, “heterotrimeric G-protein complex”, “synaptic vesicle 

membrane”, and “dendritic shaft”, were overrepresented in QII of the three ROIs CN, IC, and 

RoB, respectively. In addition, transport/synapse-related GO terms appeared also in QIII of 

the CN and SOC as well as in QI of the RoB (Fig. 5). It is no contradiction to our hypothesis 

that the transport/synapse-related terms appeared not only in QII, but also in QI (high protein 

and transcript levels; Fig. 4) and in QIII (low protein and transcript levels; Figs. 4, 5). This is 

because not all transport/synapse-related proteins are necessarily locally separate from 

cognate transcripts. Instead, the transcript can be transported as well (Wang et al. 2010, 

Jung et al. 2012), or the somata of cells in the target ROI encode a high level of the 

appropriate transcripts (cf. Introduction and Fig. 1c). This clarifies again that our approach is 

not able to address all transfer/synapse-related gene products, but only the region-typical 

ones and those for which transport occurs at the protein level. 

Interestingly, negatively correlated gene products associated with the synapse /transport-

related GO terms were overrepresented in QII, but not in QIV. In other words, we found high 

levels of some synapse/transport-related proteins and low levels of some synapse/transport-

related transcripts, but never the opposite pattern. This is indicative of a short half-life of 

transcripts of transport/synapse-related gene-products.  

 

 

Figure 5 near here 
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Fig. 5 Gene ontology (GO) analysis of overrepresented ‘Cellular components’ amongst the 
data sets of positively correlating (QI and QIII) and negatively correlating (QII and QIV) gene 
products. (a-d) Overrepresented GO cellular component terms of CN, SOC, IC, and RoB are 
listed in the appropriate quadrants (cf. Fig. 3). Transport/synapse-related terms are marked 
in cyan; nucleus-related terms are marked in magenta. Numbers in brackets as in Fig. 4. 

 

To further control the validity of our quadrant-based analysis, we considered proteins that 

are not transported outside the soma as good negative controls. Such proteins end up in 

close proximity to their site of synthesis, and one would therefore expect to see a relatively 

high correlation between the transcript and the cognate protein. As the soma is defined as 

the cell portion containing the cell nucleus, nucleic gene products appeared to us as a 

valuable control. Hence, we checked whether nuclear gene products were overrepresented 

in QI or QIII. Indeed, nucleus-related terms only appeared in QIII, i.e., representing 

correlating gene products (Fig. 5). In detail, gene products referring to “perinuclear region of 

cytoplasm” were enriched in QIII of CN and SOC. Further, “nucleus” appears in QI of CN 
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and SOC, but not in the quadrants representing negative correlating (QII and QIV), when 

using a significance level of 0.05 instead of 0.01 (not shown). In summary, the negative 

control further strengthens our hypothesis. 

In conclusion, the GO analysis of the four quadrants supports our hypothesis, as the set 

of gene products in QII of all ROIs are to a significant extent characterized by protein 

transport-related gene products. In addition to systematically analyzing subcellular 

compartments and addressing transport/synapse-related GO terms, it makes sense to 

characterize this set of gene products in more detail by checking single gene products. To 

do so, we disclosed those gene products that contributed to the overrepresentation of 

transport/synapse-related GO terms in Figures 4 and 5. We identified 13 negatively 

correlating gene products from QII in one or more ROI that were associated with 

transport/synapse-related biological processes (protein transport, vesicle-mediated 

transport, G-protein-related processes; Table 3). We further identified 23 negatively 

correlating gene products with high protein levels, but low transcript levels, in one or more 

ROI which were associated with transport/synapse-related cellular components 

(heterotrimeric G-protein complex, synaptic vesicle membrane, and dendritic shaft; Table 4).  

 

Table 3: ROIs of gene products with negatively correlating transcript|protein pairs from QII 

with transport/synapse-relevant Biological processes. 

 

Bold text depicts negatively correlating gene products (n = 2) in QII in only one auditory 
brainstem region. The column “Cellular component” lists annotated transport-relevant 
biological processes for each gene product. 
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Ap2a1 Ap2a1 Ap2a1 Adaptor protein complex AP-2, alpha 1 subunit (Predicted) x x

Ap2b1 Ap2b1 Ap2b1 AP-2 complex subunit beta x

Gnao1 Gnao1 Guanine nucleotide-binding protein G(o) subunit alpha x

Gnb1 Gnb1 Gnb1 Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1 x

Gng12 Guanine nucleotide-binding protein subunit gamma 12 x

Gng2 Gng2 Gng2 Gng2 Guanine nucleotide-binding protein subunit gamma 2 x

Napg Napg Napg Napg Gamma-soluble NSF attachment protein x

Nsf Nsf Nsf Nsf Vesicle-fusing ATPase x x

Rab3a Ras-related protein Rab-3A x

Rab10 Rab10 Rab10 Ras-related protein Rab-10 x x

Rab14 Ras-related protein Rab-14 x x

Vamp1 Vamp1 Vamp1 Vesicle-associated membrane protein 1 x x

Vamp2 Vamp2 Vamp2 Vamp2 Vesicle-associated membrane protein 2 x x

Region of interest Biological process
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Since negative correlation of transcript and protein due to transport processes is more 

probable for region-typical proteins (Fig. 1 and Introduction), we favored the candidates 

appearing in only one of the auditory regions. They comprised eight gene products (bold 

entries in Tables 3 and 4): Guanine nucleotide-binding protein subunit gamma 12 (Gng12), 

ras-related protein Rab-3A (Rab3a), calnexin (Canx), DnaJ homolog subfamily C member 5 

(Dnajc5), voltage-gated potassium channel subunit beta-2 (Kcnab2), microtubule-associated 

protein 2 (Map2), synaptotagmin-1 (Syt1), and Thy-1 membrane glycoprotein (Thy1; Tables 

3 and 4). Taken together, we found evidence that at least these eight candidates contribute 

to negative correlation due to protein transport to the periphery of the neuron. 

 

Table 4: ROIs of gene products with negatively correlating transcript|protein pairs from QII 

with transport/synapse-relevant Cellular components. 

 

Bold text depicts negatively correlating candidates  gene products (n = 7) in QII in only one 
auditory ROI. The column “Cellular component” lists annotated transport-relevant biological 
processes for each gene product. 
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Abat Abat Abat 4-aminobutyrate aminotransferase, mitochondrial x

Ak1 Adenylate kinase isoenzyme 1 x

Atp1a3 Atp1a3 Atp1a3 Atp1a3 Sodium/potassium-transporting ATPase subunit alpha-3 x x

Camk2a Calcium/calmodulin-dependent protein kinase type II subunit alpha x x

Canx Calnexin x x

Dnajc5 Dnajc5 DnaJ homolog subfamily C member 5 x

Dnajc6 DnaJ (Hsp40) homolog, subfamily C, member 6 (Predicted) x

Gnao1 Gnao1 Guanine nucleotide-binding protein G(o) subunit alpha x x

Gnb1 Gnb1 Gnb1 Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1 x x

Gng12 Guanine nucleotide-binding protein subunit gamma 12 x

Gng2 Gng2 Gng2 Gng2 Guanine nucleotide-binding protein subunit gamma 2 x

Kcnab2 Voltage-gated potassium channel subunit beta-2 x

Map2 Map2 Microtubule-associated protein 2 x x x

Mgll Monoglyceride lipase x x

Ncam1 Ncam1 Ncam1 Neural cell adhesion molecule 1 x

Nsf Nsf Nsf Nsf Vesicle-fusing ATPase x

Rab3a Ras-related protein Rab-3A x x

Slc1a2 Slc1a2 Slc1a2 Slc1a2 Excitatory amino acid transporter 2 x x x

Slc6a11 Slc6a11 Sodium- and chloride-dependent GABA transporter 3 x

Syngr1 Syngr1 Syngr1 Syngr1 Synaptogyrin-1 x

Syt1 Syt1 Synaptotagmin-1 x x

Thy1 Thy1 Thy-1 membrane glycoprotein x

Vamp1 Vamp1 Vamp1 Vesicle-associated membrane protein 1 x x

Vamp2 Vamp2 Vamp2 Vamp2 Vesicle-associated membrane protein 2 x x

Region of interest Cellular component
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Selecting differential candidates for transcriptome|proteome comparison 

Poor to moderate transcriptome|proteome correlation has been shown by Bonaldi and 

coworkers (2008). Remarkably, the authors found a much better correlation when they 

plotted the level ratios of those candidates showing a significant difference between two 

conditions. To check whether this also holds for our approach, we plotted the log values of 

significant inter-region differences of the proteins versus transcripts. These plots were 

performed for each of the six comparisons (Fig. 6). A perfect correlation would result in a 

diagonal arrangement of the dots with a slope of 1. In fact, we obtained R2 values between 

0.06 and 0.67. With the exception of the SOC/CN comparison (Fig. 6a), the correlation of 

transcripts versus proteins was moderate to good and better than that of the data clouds of 

all single levels (cf. Fig. 3). This is in line with the observations of Bonaldi and colleagues.  

Figure 6 near here 

 

  

Fig. 6 Analysis of significant inter-region ratios on the level of proteins versus transcripts. 
The six panels show data for the six possible direct comparisons of the four ROIs: (a) 
SOC/CN, (b) CN/IC, (c) SOC/IC, (d) SOC/RoB, (e) RoB/CN, (f) RoB/IC. Only those dots are 
plotted that represent a gene product with significant inter-region differences in both 
transcript and protein (adj. p ≤ 0.05). Zero represents same levels of gene product in the two 
ROIs under comparison (ratio 1; log2(1) = 0). Linear regression coefficients (R2) demonstrate 
the degree of correlation. Dot clouds were categorized into five groups. (1) positive values of 
ratio for both transcript and protein (QI). (2) positive values of protein ratio, yet negative 
values of transcript ratio (QII). (3) negative values of ratios for both transcript and protein 
(QIII). (4) positive values of transcript ratio, yet negative values of protein ratio (QIV). (5) 
gene products displaying significant inter-region differences, but failing to fulfil the 0.5 log2 
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criteria (gray dots). Gene names of all negatively correlating transcript|protein pairs are 
stated (n = 3, 1, 1, 7, 3, and 1 in (a), (b), (c), (d), (e), and (f), respectively). 

 

Despite the better correlation when taking the ratios, there were still several candidates in 

QII and QIV, which represent negatively correlating transcript|protein pairs (Fig. 6). They 

offer another fundament to specify region-typical proteins that are transported to the synapse 

(cf. Fig. 1b). For example, the protein coded by the gene Atp6v0c (V-type proton ATPase 16 

kDa proteolipid subunit) was two times more abundant in the SOC than in the CN 

(log2(2) = 1 on y axis in Fig. 6a). In contrast, the transcript abundance of this gene was 1.5-

fold lower in the SOC than in the CN (log2(1.5) = 0.58 on x-axis). Thus, Atp6v0c is a 

candidate gene for which transcription takes place in neuronal somata of the CN, followed by 

anterograde transport of the protein into axon terminals within the SOC, a major target of CN 

neurons (Malmierca and Hackett 2010). The presynaptic location of the V-type proton 

ATPase and its association with synaptic vesicles (Moriyama et al. 1992, El Far and Seagar 

2011), of which the Atp6v0c protein is a component, further supports this scenario. 
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Discussion 

In our integrative inter-omics study employing various rat brain regions, we found poor to 

moderate correlation at three levels of analysis. 1) According to the PC analysis, 

transcriptome and proteome differ in that the transcriptomes enclose highest similarities 

between CN and IC, whereas the proteomes enclose highest similarity between CN and 

SOC (Fig. 2). 2) Plotting transcript levels versus cognate protein levels revealed R2 values of 

0.34 to 0.54, implying poor to moderate transcript|protein correlation (Fig. 3). 3) Better 

correlation, although less than expected (Bonaldi et al. 2008), occurred when viewing 

significant inter-region ratios only (0.53 to 0.67; except for CN/SOC: 0.06; Fig. 6).  

Poor to moderate correlations between transcriptome and proteome have been reported 

for several samples and conditions (see Introduction). Waters and colleagues (2006) offer an 

overview over different transcriptome|proteome studies. It is obvious that the degree of 

correlation strongly depends on the condition. For example, the presence or absence of 

high-abundant proteins can strongly influence the correlation result. In detail, an analysis in 

yeast revealed good correlation (R2 = 0.87) between transcript and protein when high-

abundant proteins remained in the data set. Excluding them, however, lead to drastically 

reduced correlation (R2 = 0.13; (Gygi et al. 1999)). A similar difference, albeit less drastic, 

was reported for U937 cells (R2 = 0.74 if high-abundant proteins were included; R2 = 0.24 if 

they were excluded; (Verhoeckx et al. 2004)). Further, analyzing mouse lung resulted in no 

correlation regarding all data (R2 = 0.03), but in a better correlation for structural gene 

products (Cox et al. 2005). It is discussed that poor correlations are caused by small data 

sets that are not representative for the global set of gene products and by outdated 

techniques. However, recent studies, which used more modern and more precise methods 

than those summarized in Waters et al., found no better correlation, arguing against 

technical issues as the main source of poor correlation. In detail, recent advances in next-

generation RNA/DNA sequencing and mass spectrometry-based proteomics have provided 

an extraordinary chance to examine transcript and protein levels, assessing the relative 

importance of different regulation steps (Vogel and Marcotte 2012). For example, 

Schwanhäuser and colleagues (2011) quantified absolute copy numbers of proteins and 

transcripts per cell by using intensity-based absolute quantification (iBAQ) and mRNA 

sequencing, respectively, in a mammalian cell culture. Their R2 values of 0.37 and 0.41 in 

two replicate experiments is in the range displayed by the four ROIs of our study. Note, 

however, that Li and colleagues (2014) corrected the results of Schwanhäusser et al., which 

resulted in R2 values of 0.56 and 0.84, depending on the correction strategy. The 

discrepancies demonstrate the disagreement regarding good or poor transcript|protein 

correlation, even within the same data set, not to mention different tissues or cell types. 



27 
 

Furthermore, Wilhelm and colleagues (2014) applied the same methods as Schwanhäusser 

and colleagues and investigated transcript|protein correlation in 12 organs, excluding the 

brain. Their R2 values ranged from 0.10 (thyroid gland) to 0.31 (kidney). Nevertheless, the 

authors claimed that transcripts accurately predict protein levels when considering gene-

specific translation rates. This claim, however, has been rebutted (Fortelny et al. 2017).  

Many studies showing good correlation are based on exponentially growing cells, where 

close congruence between transcripts and proteins are biologically meaningful and where 

protein stability plays a minor role. In contrast, tissue in steady state – neurons in particular – 

depend to a lesser extend on synthesis of new proteins, but balance the protein turnover 

only. 

Main reasons for poor correlation are regulation of stability and translation of the 

transcript. For example, small RNAs can interfere with transcripts, thereby regulating their 

stability and translation (Tomari and Zamore 2005). Even single microRNAs (miRNAs) can 

cause reduced levels of dozens of transcripts (Lim et al. 2005, Shyu et al. 2008) and have a 

widespread impact on translation of hundreds of transcripts into proteins (Baek et al. 2008, 

Selbach et al. 2008). Apart from miRNA binding, also other mechanisms such as binding of 

small interfering RNAs or RNA-binding proteins can regulate transcript stability (Mata et al. 

2005, Tomari and Zamore 2005). 

Because of poor transcript|protein correlation, Payne (2015) suggested to think of a “more 

nuanced relationship” between transcript and protein, instead of expecting “trivial and 

predictable correlation”. Those nuances comprise degradation of transcripts and proteins as 

well as regulation of translation. We add another nuance that particularly applies for 

neuronal tissue. In detail, we hypothesize that a special property of brain tissue affects the 

degree of correlation, especially when addressing different brain regions. According to this 

hypothesis, levels of some proteins differ strongly from their cognate transcript level, 

because both products are spatially separated due to neuronal polarity (Fig. 1). In more 

detail, in neurons, unlike most of other tissues, the destiny sites of some proteins may be far 

remote (mm-cm) from the origin sites of transcripts. This can result in a situation where high 

transcript levels are not mirrored by high protein levels in the same brain region, but rather in 

distal regions via axonal transport to synapses or other peripheral sites. In our study, we 

found striking evidence for this hypothesis: First, from the four proteins with the strongest 

negative transcript|protein correlation, three (Slc6a11, Syngr1, Tppp) were synaptic and 

hence candidates for spatial separation of transcript. The third one (Cds2) provides no hints 

for special separation. However, as Cds2 showed the same negative correlation pattern (low 

transcript level, high protein level) in all three interconnected auditory regions, another 

reason than protein transport and spatial separation may cause negative correlation. 
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Second, a systematic bioinformatics analysis revealed that most of the biological processes 

that are overrepresented in the group of candidates with high protein levels but low transcript 

levels (QII) were related to vesicle-mediated transport (cf. Fig. 4). Further, cellular 

components related to synapses, axons or peripheral cell parts were overrepresented in this 

group of candidates (Fig. 5). Thus, these peripheral gene products strongly contribute to the 

poor correlation between transcriptome and proteome among our brain ROIs. 

Also other articles have addressed the spatial impact on processes impacting 

transcript|protein correlation, such as translation and protein degradation. Interestingly, 

murine stem cells showed a poor correlation for nuclear transcripts and proteins (Lu et al. 

2009). This is not concordant to our findings of nuclear proteins being overrepresented 

among the correlating gene-products. However, our results concerned a steady-state 

situation while the results of Lu and colleagues were obtained during fate change. 

As another potentially special impact onto transcript|protein correlation, Boisvert and 

colleagues (2012) quantified proteins and their turnover rates, i.e., the balance between 

protein synthesis and protein degradation, in three different cellular compartments, namely 

cytoplasm, nucleus, and nucleolus. They detected most of the proteins (>50%) in more than 

one compartment. Further, most proteins had similar turnover rates among the 

compartments. Nevertheless, proteins commonly showed different levels between the two or 

three compartments in their study. Further, protein degradation has been described to 

depend on cellular location. In detail, Larance and colleagues (2013) used pulse-SILAC to 

identify rapidly depleted proteins, of which some showed different degradation rates in 

separate subcellular compartments such as nucleus, cytosol, cytoskeleton, and membrane. 

Ori and colleagues (2015) performed subcellular shotgun mass spectrometry, RNA 

sequencing, and ribosome profiling to compare liver and brain of 6-month-old and 24-month-

old rats. They found cases in which changes in protein level were unexplainable by changes 

in translation level, predominantly in the brain. These interesting results are in line with our 

observations and can be explained by changes in protein localization. In detail, the authors 

detected seven proteins in the brain for which the intracellular distribution changed 

significantly. For example, the serine/threonine-protein kinase BRSK1significantly changed 

from the mitochondrial fraction in young rats to the soluble cytosolic fraction in old rats. In the 

liver, in contrast, only two proteins displayed a significantly changed subcellular location with 

age. None of the proteins detected to change the subcellular location by Ori and colleagues 

is present in our data set. This might be because the authors did not address cellular 

components that might be relevant for transport into the cell periphery, such as the synapse. 
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Using a similar approach to ours, Carlyle and colleagues (2017) found considerable 

evidence for mobile proteins affecting transcript and/or protein abundance in certain brain 

regions. For example, they analyzed a set of gene products that differed between brain 

regions in their transcript levels, but not in their protein levels. They observed enriched 

synaptic proteins in this set, which they interpreted as a consequence of protein transport, 

leading to a balanced protein level in the source (soma) and target (synapse) region, but 

level differences for the transcript that remained only in the source region. In summary, from 

these and our findings it is evident that spatial aspects affect the ratio between transcript and 

cognate protein. Liu and colleagues (2016) even hypothesized that correlations between 

proteins and their transcript levels break down when addressing even smaller spatial scales. 

 

Limitations of our study 

A negative correlation of transcript|protein pairs is not necessarily caused by transport 

processes. For example, elongation factor 1-alpha (2Eef1a2) appeared in QII in Figure 6a,d, 

demonstrating a higher protein level in the CN than in the SOC and the RoB and an inverse 

pattern for the transcript level. However, for an elongation factor, which plays a role in 

translation processes that mainly happen in the soma, there is no need for transport. Hence, 

unless being a player of “decentralized” translation in neuronal processes (Holt and 

Schuman 2013), the negative correlation may be explained by spatially differing protein 

degradation, as discussed above. 

Statistically, correlation values of 0.34 to 0.54 mean that 34-54% of the variation of 

protein level is explained by the variation of transcript level. Over the past five years, 

however, analyses and considerations have demonstrated that the real correlation between 

transcript level and protein level may be higher (cf. first paragraphs of Discussion). The 

strong discrepancy between transcript and protein levels in many studies, such as our study 

and those mentioned above, partly come from technical issues. For example, in label-free 

mass spectrometry, as used in the present study, quantification errors are not homogeneous 

across the different levels of protein abundances. The iBAQ method, used in key papers for 

absolute quantification, underestimates protein amounts in the low-abundance range 5-fold 

(Ahrne et al. 2013). This is probably so because the average intensity of low-abundant 

proteins is biased towards peptides with the highest ionization efficiency (Ahrne et al. 2013). 

Hence, statistical efforts have been made to reduce errors for iBAQ-based protein and RNA-

sequencing-based transcript measurements (Li et al. 2014, Jovanovic et al. 2015). Similarly, 

we applied normalization methods to address systematic errors based on the Cy dyes used 

for microarrays.  
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Further, based on the methods applied, we cannot make quantitative conclusions about 

the regulation rates influencing transcript and protein level. In other words, although we 

suggest that protein transport is another important factor that influences the transcript|protein 

correlation in neuronal tissue, we are aware that we cannot draw conclusions about how 

strong this impact is. As Vogel and Marcotte (2012) pointed out, transcript and protein levels 

should not be confused with the rate of translation or transcription, respectively. Only the 

complex interaction of production and degradation rate, as well as protein transport, 

determines the exact transcript|protein correlation. To draw conclusions about relative or 

even absolute rates of transcript and protein production, degradation and transport, one has 

to await more detailed studies. These should measure the absolute quantities and turnover 

rates while in parallel tracking proteins locations among subcellular components (e.g., as in 

(Boisvert et al. 2012), but comparing soma with synapse instead of cytoplasm with nucleus). 

Our lists of 30 transport/synapse-relevant gene products with negatively correlating 

transcript|protein levels may be starting point for future analyses.  

Finally, transcript isoforms can be generated by the same gene via alternative splicing, 

thus affecting transcript|protein correlation. Future experimental series may avoid this 

drawback by using RNA sequencing, which is better in quantifying transcript isoforms than 

mRNA microarrays (Lui et al. 2016, Liu et al. 2017). 

 

Conclusion and outlook 

To our knowledge, there are only very few studies in which negatively correlating gene 

products have been analyzed in detail. In our data set, both the analysis of gene product 

levels (Fig. 3) and the significant inter-ROI ratios (Fig. 6) provide a solid basis for further 

analysis of negatively correlating transcript|protein pairs. We suggest a third aspect that 

determines transcript and protein levels and particularly applies to neuronal tissue (Fig. 7). In 

addition to transcription and translation rates as well as transcript and protein degradation, 

we introduce protein transport as a further factor influencing the protein level and thereby 

transcript|protein correlation. Comparative approaches like ours will help to create multi-

layered expression maps and to comprehend transcriptional and translational regulation at 

the system level, including factors like protein transport in polar cell systems, such as 

neurons. Separating distal neuronal processes (axons, dendrites) from their cell bodies may 

enable us to assess the impact of protein transport for transcript|protein correlation more 

accurately. Advanced technologies, by which neuronal processes can be isolated from cell 

bodies, apply fluid chambers (Eng et al. 1999, Taylor et al. 2010), filtering substrates (Torre 

and Steward 1992, Zheng et al. 2001) and laser capture microdissection (Zivraj et al. 2010). 
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Fig. 7 Steps regulating regional protein expression in neurons. Production rate (transcription 
and translation), degradation, and transport all contribute to the levels of transcripts and 
proteins. 
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Supplementary Figures 

 

 

 

Supplementary Figure 1: Microarray sample setup. Each double arrow indicates a sample 
combination that was co-hybridized on two arrays with a dye swap. Analysis was based on 
five replicates of each brain region.  
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Supplementary Figure 2: Density blots and MA plots of the microarray analysis 
(a-c) Density plot of the logarithmized fluorescence intensity of the microarray probes, 
demonstrating the signal distribution of the red (R) and green (G) signals for each array 
(n = 20) before and after different normalization steps. (d,e) MA plots showing the 
relationship of log signal ratios (M, log2(red/green)) to signal intensities (A, 
1/2*log2(red*green)) before and after loess and quantile normalization. Dots with equal 
signal intensity for the red and green signal (ratio = 1; log2(1) = 0) are plotted on the blue 
horizontal line. 

 

Supplementary Figures 

Supplementary Table 1: Normalized microarray data showing probe name, gene name, and 

GenBank Accession number of all probes as well as Cy3 and Cy5 signal intensities for the 

four ROI and its replicates. 

Supplementary Table 2: Normalized mass spectrometry data showing International Protein 

Index (IPI) number and gene name of all identified proteins as well as signal intensities for 

the four ROI and its replicates. 
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