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Abstract

Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of
breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused
by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations
affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial
haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background
can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that
mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers.

Methods: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of
Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference
and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference
mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals.

Results: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of
clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent
haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to
0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has
demonstrated an inverse association with familial breast cancer risk.

Conclusions: This study illustrates how original approaches such as the phylogeny-based method we used can empower
classical molecular epidemiological studies aimed at identifying association or risk modification effects.
Introduction
Breast cancer is a multifactorial disease with genetic, life-
style and environmental susceptibility factors. Approxi-
mately 15% to 20% of the familial aggregation of breast
cancer is accounted for by mutations in high-penetrance
susceptibility genes [1-3], such as BRCA1 and BRCA2.
Pathogenic mutations in BRCA1 and BRCA2 confer
lifetime breast cancer risk of 60% to 85% [4,5] and 40%
to 85% [4,5], respectively. Other genomic variations
(for example, in genes encoding proteins interacting
with BRCA1 and BRCA2) have been identified as
modifiers of breast cancer risk and increase or
decrease the risk initially conferred by BRCA1 or BRCA2
mutation [6].
BRCA1 and BRCA2 are involved in DNA repair mecha-

nisms, including double-strand break (DSB) repair by
homologous recombination [7,8]. DSBs are considered to
be among the most deleterious forms of DNA damage
because the integrity of both DNA strands is compromised
simultaneously. These breaks can lead to genomic
instability resulting in translocations, deletions, duplications
or mutations when not correctly repaired [9]. Reactive
oxygen species (ROS) are one of the main causes of DSBs,
along with exposure to ionizing radiation, various chemical
agents and ultraviolet light [10].
ROS are naturally occurring chemical derivatives of

metabolism. Elevated levels of ROS and downregulation
of ROS scavengers and/or antioxidant enzymes can lead
to oxidative stress, which is associated with a number of
human diseases, including various cancers [11]. The
electron transport chain process, which takes place in the
mitochondria, generates the majority of ROS in human
cells. Variations in the mitochondrial genome have been
shown to be associated with metabolic phenotypes and
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oxidative stress markers [12]. Mitochondrial dysfunction
recently was shown to promote breast cancer cell
migration and invasion through the accumulation of a
transcription factor, hypoxia-inducible factor 1α, via
increased production of ROS [13].
Human mitochondrial DNA (mtDNA) has undergone

a large number of mutations that have segregated
during evolution. Those changes are now used to define
mitochondrial haplogroups. Some of these changes slightly
modify metabolic performance and energy production;
thus, not all haplogroups have identical metabolic
capacities [14]. It has been hypothesized that the geo-
graphic distribution of mitochondrial haplogroups results
from selection of metabolic capacities driven mainly by
adaptation to climate and nutrition [15,16].
Mitochondrial haplogroups have been associated with

diverse multifactorial diseases, such as Alzheimer’s
disease [17], hypertrophic cardiomyopathy [18], retinal
diseases [19] or age-related macular degeneration [20].
Variations in mtDNA have also been linked to several
types of cancer, such as gastric cancer [21] or renal cell
carcinoma [22]. Interestingly, variations in mtDNA have
been linked to several types of female cancers, including
endometrial [23], ovarian [24] and breast cancer [25,26].
A recent study underlined the possibility that mtDNA
might be involved in the pathogenic and molecular
mechanisms of familial breast cancer [27].
The Collaborative Oncological Gene-environment Study

[28] (COGS) is a European project designed to improve
understanding of genetic susceptibility to breast, ovarian
and prostate cancer. This project involves several consortia:
the Breast Cancer Association Consortium (BCAC) [29],
the Ovarian Cancer Association Consortium [30], the
Prostate Cancer Association Group to Investigate Cancer
Associated Alterations in the Genome (PRACTICAL) [31]
and the Consortium of Investigators of Modifiers of
BRCA1/2 (CIMBA) [32]. CIMBA is a collaborative group
of researchers working on genetic modifiers of cancer risk
in BRCA1 and BRCA2 mutation carriers. As part of the
COGS project, more than 200,000 single-nucleotide
polymorphisms (SNPs) were genotyped for BRCA1
and BRCA2 female mutation carriers on the iCOGS
chip, including 129 mitochondrial polymorphisms. The
iCOGS chip is a custom Illumina™ Infinium genotyping
array (Illumina, San Diego, CA, USA) designed to test, in
a cost-effective manner, genetic variants related to breast,
ovarian and prostate cancers.
In this study, we explored mitochondrial haplogroups

as potential modifiers of breast cancer risk in women
carrying pathogenic BRCA1 or BRCA2 mutations. Our
study includes females diagnosed with breast cancer
and unaffected carriers belonging to CIMBA. We used an
original analytic phylogenetics-based approach implemented
in a homemade algorithm and in the program ALTree
[33,34] to infer haplogroups and to detect associations
between haplogroups and breast cancer risk.

Methods
Ethics statement
A signed informed written consent form was obtained
from all participants. All contributing studies involved in
CIMBA received approvals from the institutional review
committees at their host institutions. Ethical committees
that approved access to the data analyzed in this study
are listed in Additional file 1.

BRCA1 and BRCA2 mutation carriers
Final analyses included 7,432 breast cancer cases and
7,104 unaffected BRCA1 mutation carriers, as well as
3,989 invasive breast cancer and 3,689 unaffected BRCA2
mutation carriers, all belonging to CIMBA. Supplementary
specifications regarding inclusion profiles and studies
belonging to CIMBA are available in the reports by Couch
et al. [35] and Gaudet et al. [36]. All analyses were
conducted separately on CIMBA BRCA1 and BRCA2
mutation carriers (abbreviated pop1 and pop2, respectively).
Eligible female carriers were aged 18 years or older and had
a pathogenic mutation in BRCA1 and/or BRCA2. Women
with both BRCA1 and BRCA2 mutations were included in
downstream analyses. Data were available for year of birth,
age at study recruitment, age at cancer diagnosis, BRCA1
and BRCA2 mutation description and self-reported ethni-
city. Women with ovarian cancer history were not excluded
from analyses, and they represented 15% and 7% of BRCA1
and BRCA2 mutation carriers, respectively. Information
regarding mastectomy was incomplete and was therefore
not used as an inclusion or exclusion parameter.

Genotyping and quality filtering
Genotyping was conducted using the iCOGS custom
Illumina Infinium array. Data from this array are available
to the scientific community upon request. Please see
[37] for more information. Genotypes were called using
Illumina’s proprietary GenCall algorithm. Genotyping and
quality filtering were described previously [35,36]. Initially,
129 mitochondrial SNPs were genotyped for both BRCA1
and BRCA2 mutation carriers. SNPs fulfilling the following
criteria were excluded from downstream analyses:
monoallelic SNPs (minor allele frequency = 0), SNPs
with more than 5% data missing, annotated as triallelic, or
having probes cross-matching with the nuclear genome.
Heterozygous genotypes were removed from analyses, and
we further filtered out SNPs having more than 5% of
heterozygous calls to limit the potential for heteroplasmy
affecting our results. We also did not retain SNPs repre-
senting private mutations. These mutations are rare, often
restricted to a few families, and not sufficiently prevalent
in the general population to be included in the reference
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mitochondrial evolutionary tree (see below). This last step
of filtration yielded 93 and 92 SNPs for the pop1 and pop2
analyses, respectively (see Additional file 2). Only
individuals with fully defined haplotypes (that is, non-
missing genotypes for the 93 and 92 SNPs selected for
pop1 and pop2, respectively) were included in downstream
analyses (14,536 and 7,678 individuals, respectively).

Mitochondrial genome evolution and haplogroup
definition
Analyses were based on the theoretical reconstructed
phylogenetic tree of the mitochondrial genome (mtTree)
known as PhyloTree [38] (v.15). The mtTree is rooted by
the Reconstructed Sapiens Reference Sequence (RSRS).
Figure 1 Simplified representation of the phylogenic method used to infe
at each node of the reference tree. (b) Haplotypes are then restricted to av
haplotypes are matched directly with the corresponding haplogroup. (d) S
their most recent common ancestor haplogroup. RSRS, Reconstructed Sapi
RSRS has been identified as the most likely candidate to
root the mtTree by refining human mitochondrial
phylogeny by parsimony [39]. Each haplogroup in mtTree
is defined by the set of mtDNA SNPs that have segregated
in RSRS until today in the mitochondrial genome. Each
haplogroup is fully characterized by the 16,569-bp
sequence resulting from the application of all the
substitutions that are encoded by the corresponding
SNPs in the RSRS sequence.

Haplogroups imputation
The phylogenetic approach used to infer haplogroups is
described in Figure 1. Mitochondrial genome sequences
can be reconstructed at each node of mtTree, given the
r haplogroups. (a) Full-length haplotypic sequences are reconstructed
ailable loci. Sequences of the same color are identical. (c) Unique short
equences that match with several haplogroups are associated with
ens Reference Sequence.
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substitutions that have segregated in RSRS. Each hap-
logroup therefore has a corresponding full-length mito-
chondrial sequence. However, the full-length mitochondrial
sequence is not available in the data, because the iCOGS
platform captured only 93 and 92 SNPs for pop1 and
pop2, respectively. Thus, for each of the 7,864 nodes
of the phylogenetic tree, the corresponding short
haplotype (that is, the full-length sequence restricted
to available loci) was defined. Some of the short hap-
lotypes are unique, and they can be matched with
their corresponding haplogroup directly. However,
most of the time, given the small number of SNPs
analyzed, several haplogroups correspond to the same
short haplotype. Consequently, a unique haplogroup
cannot confidently be assigned to each short haplotype.
Therefore, each short haplotype was assigned the most
recent common ancestor of all the haplogroups that share
the same short haplotype. Once this matching was done,
short haplotypes were reconstructed in the same way for
each individual in our dataset and were assigned the
corresponding haplogroup. The accuracy of the method
used was assessed by application to a set of 630 mtDNA
sequences of known European and Caucasian haplogroups
(see Additional file 3).

Association detection
This phylogenetic approach is based on the identifica-
tion of subclades in the reference phylogenetic tree
of the mitochondrial genome differentially enriched
for cases and unaffected controls compared with
neighboring subclades. We used ALTree [33,34] to
perform association testing. ALTree—standing for
Association detection and Localization of susceptibility
sites using haplotype phylogenetic Trees—is an algorithm
used to perform nested homogeneity tests to compare
distributions of affected and unaffected individuals in
the different clades of a given phylogenetic tree. The
objective is to detect if some clades of a phylogenetic
tree are more or less enriched in affected or unaffected
individuals compared with the rest of the tree. There
are as many tests performed as there are levels in the
phylogenetic tree. The P-value at each level of the
tree is obtained by a permutation procedure in which
1,000 permutations are performed. Individual labels
(“affected” or “unaffected”) are permutated 1,000
times to see to what extent the observed distribution
of affected or unaffected is different from a random
distribution. A procedure to correct for multiple testing
adapted to nested tests [40] is implemented in ALTree.
The objective of ALTree is to detect an enrichment
difference at the level of the whole tree. To conserve
computational time and resources, only the most sig-
nificant P-value obtained for all tests performed on
one tree is corrected.
Handling genetic dependency
ALTree is used to perform homogeneity tests to detect
differences in enrichment or depletion of affected or
unaffected individuals between clades in the phylogenetic
tree. This kind of test can be performed only on independ-
ent data. However, because some individuals in the CIMBA
dataset belong to the same family, we constructed datasets
with genetically independent data by randomly selecting
one individual from among all those belonging to the same
family and sharing the same short haplotype. To take into
account the full variability of our data, we resampled 1,000
times. The results of the analysis pipeline are obtained for
each resampling independently and then averaged over the
1,000 resamplings to obtain final results.

Character reconstruction at ancestral nodes
Before the ALTree localization algorithm was launched,
ancestral sequences were reconstructed at each internal
tree node; that is, short haplotypes were inferred with
maximum likelihood at all nodes that were not leaves. We
used the software PAML [41] to perform the reconstruction
at ancestral nodes using a maximum likelihood method.
The phylogeny model used was the general time-reversible
model (either GTR or REV).

Localization of susceptibility sites
ALTree also includes an algorithm used to identify
which sites are the most likely ones to be involved in the
association detected. For each short haplotype observed,
the ALTree add-on altree-add-S adds to the short
haplotype sequence a supplementary character called
S, which represents the disease status associated with
this short haplotype. Are individuals carrying this
short haplotype more often affected or unaffected? S is
calculated based on the affected and unaffected counts, the
relative proportion of affected and unaffected in the whole
dataset, and sensibility parameter ε. ε was set to its default
value, which is 1. After S character computation, haplotypes
including character S are reconstructed at ancestral nodes.
Susceptibility site localization is achieved with ALTree by
computing a correlated evolution index calculated between
each change of each site and the changes of the character S
in the two possible directions of change. The sites whose
evolution are the most correlated with the character S are
the most likely susceptibility sites.

Selected subclades
The analyses were carried out on the full evolutionary
tree. However, the more haplogroups there are at each
level, the less statistical power homogeneity tests have.
Therefore, analyses were also applied to subclades
extracted from the tree. Subclades were defined using
counts of individuals in each haplogroup of the clade
to maximize statistical power. The chosen subclades



Table 1 Counts of participants in selected subclades

Subclade BRCA1 mutation carriers BRCA2 mutation carriers

U8 1,458 863

T 1,243 651

J 1,270 630

J1 1,043 513

H 3,706 1,967

H1 582 337

U5 868 458

X1′2′3 221 103

K1a 608 364

Table 2 Mean corrected P-values for association testing
with ALTree

Subclade pop1 corrected P-value pop2 corrected P-value

Full 0.830 0.681

U8 0.146 0.626

T 0.285 0.040

J 0.718 0.112

J1 0.621 0.150

H 0.747 0.930

H1 0.268 0.804

U5 0.829 0.747

X1′2 ′3 0.416 0.629

K1a 0.170 0.162
apop1, BRCA1 mutation carrier; pop2, BRCA2 mutation carrier. Bold indicates a
significant P-value.
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and corresponding affected and unaffected counts are
presented in Table 2.

Statistical analysis
We quantified the effect associated with enrichment
discovered by applying ALTree by building a weighted
Cox regression in which the outcome variable is the
status (affected or non-affected) and the explicative
variable is the inferred haplogroup. Analyses were
stratified by country. Data were restricted to the clades of
interest. The uncertainty in haplogroup inference was not
taken into account in the model. The weighting method
used takes into account breast cancer incidence rate
as a function of age [42] and the gene containing the
observed pathogenic mutation (that is, BRCA1 or
BRCA2). Familial dependency was handled by using a
robust sandwich estimate of variance (R package survival,
cluster() function).

Results
Haplogroup imputation
In Additional file 4, absolute and relative frequencies are
recapitulated for each haplogroup imputed in BRCA1
and BRCA2 mutation carriers. For BRCA1 mutation
carriers, we reconstructed 489 distinct short haplotypes
of 93 loci from the genotypes data. Only 162 of those
489 short haplotypes matched theoretical haplotypes
reconstructed in the reference mitochondrial evolutionary
tree. These 162 haplotypes represented 13,315 of 14,536
individuals. Thus, 91.6% of BRCA1 mutation carriers were
successfully assigned a haplogroup. For BRCA2 mutation
carriers, we reconstructed 350 distinct short haplotypes of
92 loci from our genotype data. Only 139 of those
350 short haplotypes matched theoretical haplotypes
reconstructed in the reference mitochondrial evolutionary
tree. These 139 haplotypes represented 6,996 of 7,678
individuals. Thus, 91.1% of BRCA2 mutation carriers were
successfully assigned a haplogroup. Because more BRCA1
than BRCA2 mutation carriers were genotyped (14,536 vs.
7,678 individuals), we logically observed more distinct
haplotypes in pop1 than in pop2 (489 vs. 350 haplotypes).
The accuracy of the main haplogroup inference

method used was estimated at 82% and reached 100% for
haplogroups I, J, K, T, U, W and X. Given the set of SNPs
we disposed of, our method has difficulty differentiating
between H and V haplogroups (see Additional file 3).

Association results
For both populations of BRCA1 or BRCA2 mutation
carriers, as well as for the full tree as for all selected
subclades (see Table 1), we extracted the mean corrected
P-values for association testing over all resamplings
performed (see Table 2). The only corrected P-value that
remained significant was that obtained for subclade T
(abbreviated T*) in the population of individuals of
BRCA2 mutation carriers (P = 0.04).
The phylogenetic tree of subclade T (see Figure 2a)

contains only three levels; thus, only three tests were
performed within this clade. Raw P-values were examined
to determine at which level of the tree ALTree detects a
difference of enrichment in affected or unaffected
individuals (see Table 3). Only the P-value associated
with the test performed at the first level of the tree is
significant. We looked more closely at the mean frequen-
cies of affected and unaffected individuals in the tree at
this level (see Figure 2b). In the T1a1 subclade, the mean
count of affected and unaffected are 32 and 47, respect-
ively. In the T2* subclade, we observed, on average, 217
and 148 affected and unaffected individuals, respectively,
whereas in the T subclade, we observed, on average, 13
and 11 affected and unaffected individuals, respectively.
The ranges observed for each of these values over the
1,000 resamplings are represented in Figure 2b. On the
basis of these observations, we conclude that subclade
T1a1 is depleted in affected carriers compared with the
neighboring subclades T and T2.



Figure 2 Phylogenetic tree of subclade T tested for association with ALTree. (a) Phylogenetic tree of subclade T with all observed haplogroups.
A homogeneity test is performed at each level of the tree. (b) First level of the phylogenetic tree of subclade T. Averaged counts, ranges and
proportions of affected and unaffected observed in resamplings are indicated below each subclade. T2* represents the entire T2 subclade.
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Localization results
We performed a localization analysis with ALTree. The
correlated evolution index for all non-monomorphic
sites observed in short haplotype sequences of subclade T
are displayed in Additional file 5. The higher the correlated
evolution index, the more likely it is that corresponding
sites will be involved in the observed association.
Three short haplotype sites numbered 44, 57 and 72 and
corresponding to SNPs T988C, G11812A/rs4154217 and
G13708A/rs28359178, respectively, clearly distinguish
themselves, with correlation index values of 0.390, 0.324
and 0.318, respectively, whereas the correlation index
values of all other sites ranged from −0.270 to −0.101.
Table 4 shows the details for these three loci.

Effect quantification
The ALTree method is able to detect an association, but
cannot to quantify the associated effect. We estimated
the risk of breast cancer for individuals with the T1a1
haplogroup compared with individuals with another T
subclade haplogroup in the population of BRCA2 mutation
carriers using a more classical statistical method, a weighted
Cox regression. We found a breast cancer HR of 0.55
(95% CI, 0.34 to 0.88; P = 0.014). We also tested haplogroup
Table 3 Non-corrected P-values by level of phylogenetic
tree for subclade T in BRCA2 mutation carriers

Level Degrees of freedom Mean of non-corrected P-value

1 2 0.02141039

2 6 0.14355900

3 8 0.22249700
T1a1 and compared it with other T* haplogroups and
the H haplogroup (the main haplogroup in the general
population), and we found a breast cancer HR of 0.62
(95% CI, 0.40 to 0.95; P = 0.03).

Discussion
We employed an original phylogenetic analytic method,
coupled with more classical molecular epidemiologic
analyses, to detect mitochondrial haplogroups differentially
enriched for affected BRCA1/2 mutation carriers. We
successfully inferred haplogroups for more than 90% of
individuals in our dataset. After haplogroup imputation,
the ALTree method identified T1a1 in the T clade as differ-
entially enriched in affected BRCA2 mutation carriers,
whereas no enrichment difference was found for BRCA1
mutation carriers. The T subclade is present in 4% of
African populations compared with 11% in Caucasian and
Eastern European populations [43]. In our data, the T
subclade represented 9.34% of BRCA1 mutation carriers
and 9.30% of BRCA2 carriers. The ALTree method also
identified three potential breast cancer susceptibility loci in
mtDNA. The main goals of using the phylogenetic method
we used were to improve statistical power by regrouping
subclades according to genetic considerations, to limit the
number of tests performed and to precisely quantify this
number. ALTree identified three SNPs of interest. Whereas
the association we observed could possibly be driven
by a single SNP, no difference was observed between
multivariate and univariate cox models including the
three SNPs identified by ALTree (data not shown).
In this study, we investigated to what extent mtDNA

variability modified breast cancer risk in individuals



Table 4 Description of loci identified as potential susceptibility sites by ALTreea

Site SNP name Position Direction of change Correlated evolution index Major allele Minor allele MAF in pop2

44 MitoT9900C 9,899 T → C 0.390 T C 0.016

57 rs41544217 11,812 G → A 0.324 A G 0.071

72 rs28359178 13,708 G → A 0.318 G A 0.111
aMAF, Mean allele frequency; pop2, BRCA2 mutation carrier.
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carrying pathogenic mutations in BRCA1/2. A large
proportion of breast cancer heritability still remains
unexplained today [44]. Different methods exist to study
genomic susceptibility to a disease, such as linkage analyses
(which identified the BRCA1 and BRCA2 susceptibility
genes) or genome-wide association studies (GWASs).
However, classical linkage analysis cannot be applied to the
haploid mitochondrial genome. Furthermore, commercial
GWAS chips available do not adequately capture the
majority of mtDNA SNPs. A non-genome-wide and
mtDNA-focused approach was required to explore
how mtDNA variability influences breast cancer risk.
Here we have shown that BRCA2 mutation carriers
with the subclade T1a1 have between 30% and 50%
less risk of breast cancer than those with other
clades, which, if validated, is a clinically meaningful
risk reduction and may influence the choice of risk
management strategies.
The association we observed among BRCA2, but

not BRCA1, mutation carriers may reveal a functional
alteration that would be specific to mechanisms involving
BRCA2-related breast cancer. Today, it is established that
BRCA1- and BRCA2-associated breast cancers are not
phenotypically identical. These two types of tumors do
not harbor the same gene expression profiles or copy
number alterations [45]. Breast cancer risk modifiers in
BRCA1/2 mutation carriers have already been identified
[46]. However, most of them are specific from one or the
other type of mutation carried [47]. It is therefore not
surprising that this observation is observed in BRCA2
mutation carriers only.
Our inability to assign haplogroups to 9% of study

participants could have three main explanations. First,
given the high mutation rate in the mitochondrial
genome, observed combinations of mtDNA SNPs
might have appeared relatively recently in the general
population, and the corresponding haplotypes might
not yet be incorporated into PhyloTree. Second, only one
genotyping error could lead to chimeric haplotypes that
do not exist, although, given the quality of our genotyping
data, this is unlikely. Third, the mitochondrial reference
evolutionary tree PhyloTree is based on phylogeny recon-
struction by parsimony, and, for some subclades, it might
be suboptimal, especially for haplogroups relying on few
mitochondrial sequences, as is the case for African
haplogroups [48]. In cases of uncertainty, the choice we
made to assign the most recent common ancestor to the
studied haplotype enabled us to improve statistical power
without introducing a bias in the detected association.
For the association detected between T, T1* and T2*
subclades, the haplogroup inference method used did
not bias the counts of affected and unaffected individuals
in these subclades. More details are presented in
Additional file 6. Furthermore, on the basis of the
haplogroup inference with our method of 630 European
and Caucasian mtDNA sequences whose haplogroup
is known, we successfully assigned the correct main
haplogroup and subhaplogroup of 100% of sequences
belonging to T, T2* and T1a1* haplogroups.
We quantified the effect corresponding to the de-

tected association by using a more classical approach.
We built a weighted Cox regression including inferred
haplogroup as an explicative variable. However, the
uncertainty in haplogroup inference was not taken
into account in this model. Nevertheless, based on
haplogroup assignment and regrouping performed in clade
T, affected and unaffected counts of individuals in this
clade were not biased.
With only 129 loci genotyped over the 16,569 nucleo-

tides composing the mitochondrial genome, we certainly
did not explore the full variability of mitochondrial
haplotypes. A characterization of individual mitochondrial
genomes would require more complete data acquisition
methods to be used, such as next-generation sequen-
cing. However, next-generation sequencing has its
own limits and challenges, because some regions of
the mitochondrial genome are not easily mappable,
owing to a high homology with the nuclear genome,
among other factors, and important bioinformatics
treatment is necessary to overcome sequencing technology
biases. Finally, even for a relatively short genome of “only”
16,569 bp, mtDNA sequencing of more than 20,000
individuals would represent a major increase in cost
relative to genotyping 129 SNPs.
ALTree identified T9899C, G11812A/rs41544217 and

G13708A/rs28359178 as three potential susceptibility sites
for the discovered association (see Additional file 7). These
three SNPs are located in the coding part of genes
MT-CO3, MT-ND4 and MT-ND5, respectively. When
looking at PhyloTree, T9899C seems to be involved in T1
subclade definition, whereas G13708A and A11812G are
involved in T2 subclade definition. Whereas T98899C and
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G11821/rs41544217 are synonymous SNPs, G10398A
leads to a change of amino acid in the final protein (from
alanine to threonine). These two synonymous SNPs have
never been described in a disease context in the literature.
G13708A is also known for being a secondary mutation
for Leber’s hereditary optic neuropathy (LHON) and
multiple sclerosis [49]. Although the role of secondary
mutations in LHON is still controversial, G13708A
could be associated with impairment of the respiratory
chain in this pathology. G13708A has also been described
as a somatic mutation in a breast cancer tumor, whereas it
was not present in adjacent normal tissue or in blood
leukocytes [50]. A high proportion of mitochondrial
somatic tumor-specific variants are also known
mtDNA SNPs, which is consistent with the hypothesis
that tumor cells are prone to acquire the same mutations
that segregate into mtDNA by selective adaptation
when humans migrated out of Africa and confronted
new environments [51]. Interestingly, the germline
variant G13708A has already been shown to be inversely
associated with familial breast cancer risk (with the
same direction of the association), with a breast cancer
odds ratio of 0.47 (95% CI, 0.24 to 0.92) [52]. None
of these SNPs have been described in the context of
ovarian cancer.
The corrected P-value obtained using ALTree in

studying clade T is 0.02, which is not highly significant.
A replication step should be performed to validate these
results. However, it will be difficult to include enough
women in this replication step, given the specific profile
studied here. In fact, the estimations of BRCA2 patho-
genic mutations in the general population range from
0.068% [5] to 0.69% [53]. T1a1 represents only a small
percentage of European haplogroups (from 1% to 2%).
The number of women who have this association is
therefore low. However, women carrying such mutations
are confronted with drastic choices regarding the preven-
tion of breast cancer, notably prophylactic mastectomy or
complete hysterectomy. If breast cancer risk is really
reduced by a factor of 2 for women with T1a1, this
could be an important fact to take into account for
breast cancer prevention.

Conclusions
This study and our results suggest that mitochondrial
haplogroup T1a1 may modify the individual breast
cancer risk in BRCA2 mutation carriers. For now, this
observation cannot be extended to the general population.
Further investigation of the biological mechanism behind
the associations we observed may further reinforce
the hypothesis that the mitochondrial genome is influential
in breast cancer risk, particularly among carriers of BRCA2
mutations, and, if validated, is of a level to influence cancer
risk management choices.
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