
HAL Id: hal-02049884
https://univ-lyon1.hal.science/hal-02049884

Submitted on 23 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantifying the role of weather on seasonal influenza
M. Roussel, D. Pontier, J.M. Cohen, B. Lina, D. Fouchet

To cite this version:
M. Roussel, D. Pontier, J.M. Cohen, B. Lina, D. Fouchet. Quantifying the role of weather on seasonal
influenza. BMC Public Health, 2016, 16, pp.441. �10.1186/s12889-016-3114-x�. �hal-02049884�

https://univ-lyon1.hal.science/hal-02049884
https://hal.archives-ouvertes.fr


RESEARCH ARTICLE Open Access
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Marion Roussel1,2*, Dominique Pontier1,2, Jean-Marie Cohen3, Bruno Lina4,5 and David Fouchet1,2

Abstract

Background: Improving knowledge about influenza transmission is crucial to upgrade surveillance network and to
develop accurate predicting models to enhance public health intervention strategies. Epidemics usually occur in
winter in temperate countries and during the rainy season for tropical countries, suggesting a climate impact on
influenza spread. Despite a lot of studies, the role of weather on influenza spread is not yet fully understood. In the
present study, we investigated this issue at two different levels.

Methods: First, we evaluated how weekly (intra-annual) incidence variations of clinical diseases could be linked to
those of climatic factors. We considered that only a fraction of the human population is susceptible at the
beginning of a year due to immunity acquired from previous years. Second, we focused on epidemic sizes
(cumulated number of clinical reported cases) and looked at how their inter-annual and regional variations could
be related to differences in the winter climatic conditions of the epidemic years over the regions. We quantified the
impact of fifteen climatic variables in France using the Réseau des GROG surveillance network incidence data over
eleven regions and nine years.

Results: At the epidemic scale, no impact of climatic factors was highlighted. At the intra-annual scale, six climatic
variables had a significant impact: average temperature (5.54 ± 1.09 %), absolute humidity (5.94 ± 1.08 %), daily
variation of absolute humidity (3.02 ± 1.17 %), sunshine duration (3.46 ± 1.06 %), relative humidity (4.92 ± 1.20 %)
and daily variation of relative humidity (4.46 ± 1.24 %). Since in practice the impact of two highly correlated
variables is very hard to disentangle, we performed a principal component analysis that revealed two groups of
three highly correlated climatic variables: one including the first three highlighted climatic variables on the one
hand, the other including the last three ones on the other hand.

Conclusions: These results suggest that, among the six factors that appeared to be significant, only two (one per
group) could in fact have a real effect on influenza spread, although it is not possible to determine which one
based on a purely statistical argument. Our results support the idea of an important role of climate on the spread
of influenza.

Background
Influenza is one of the most significant diseases in
humans, generating worldwide annual epidemics, which
result in about three to five million cases of severe illness,
and about 250,000 to 500,000 deaths [1]. Improving influ-
enza knowledge about key epidemiological parameters
such as survival, transmission and reproduction in hosts is

essential to upgrade surveillance network and to develop
more accurate predicting models. Better epidemic pre-
dictions would set up more appropriate public health
prevention and intervention strategies.
Epidemics occur mainly during the winter season

months in temperate countries [2–4] unlike in tropical
and sub-tropical countries where they generally happen
during the rainy season [5–8]. These differences suggest
a climate impact on influenza spread. Climate might affect
influenza diffusion (onset, duration, size) by impacting in-
dividuals’ contact rates (frequency and duration), popula-
tion immunity and virus survival outside human body.
The role of weather is however not fully understood [9]

* Correspondence: marion.roussel1@gmail.com
1University Lyon 1, CNRS, UMR 5558, Biometry and Evolutionary Biology
laboratory, Bât. Grégor Mendel 43 bd du 11 novembre 1918, Villeurbanne
Cedex F-69622, France
2LabEx ECOFECT, Eco-evolutionary Dynamics of infectious Diseases,
University of Lyon, Lyon, France
Full list of author information is available at the end of the article

© 2016 Roussel et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Roussel et al. BMC Public Health  (2016) 16:441 
DOI 10.1186/s12889-016-3114-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s12889-016-3114-x&domain=pdf
mailto:marion.roussel1@gmail.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


despite a lot of laboratory studies of host susceptibility
according to environmental conditions [10–12] and
mathematical modeling approaches analyzing the link
between influenza morbidity or mortality and climatic
factors [13–18].
Various climatic factors such as temperature, humidity,

rainfalls, UV radiation, sunshine duration and wind speed
might have an impact on influenza spread. In temperate
countries, humidity and temperature might play an im-
portant role in influenza spread. Several laboratory works
showed that a cold and dry weather promotes a higher
virus survival outside human body and a better transmis-
sion [11, 19]. Cold air inhalation chills nasal epithelium
leading to an inhibition of mechanical defenses of the re-
spiratory mucosa and of the immune system [20]. Other-
wise models explaining influenza epidemics (e.g., onset,
peak, mortality) according to climatic factors reinforce the
role of humidity and temperature in influenza spread in
the United States [13, 15] as well as in Europe [16, 21].
Rainfalls might have an impact in tropical and sub-
tropical countries such as in Central and South America
[22–24] and in Asia [25, 26]. Another theory suggests a
link between vitamin D secretion and influenza immunity,
which is supported by experiments [27, 28]. As UV ra-
diation is involved in vitamin D production, a lack of
UV radiation in winter, for temperate countries, leads
to a reduction of vitamin D production and might boost
influenza epidemics [29, 30]. Dowell [31] also suggested a
role of dark/light cycles and photoperiod on the immune
systems caused by melatonin fluctuations. Thereby UV
radiation and sunshine duration might have an indirect
effect on influenza infections. Finally in China, Xiao et
al. [32] proposed that a low wind speed contribute to
influenza spread. In fact a strong wind speed may have
a dispersive effect on influenza in the environment lim-
iting its diffusion.
The aim of this study is to quantify the impact of sev-

eral climatic factors such as temperature, humidity, and
rainfalls, on influenza epidemics in France, a temperate
country. The role of weather can be estimated based on
the variation of influenza propagation in an area according
to its climate variation. Usually studies compared observed
to modeled epidemics taking into account climatic factors
by comparing incidence or mortality within an epidemic
year [13–18]. The impact of the climatic factors included
in the model is supported if modeled and observed epi-
demics are similar. However little information is available
about influenza transmission. Modeling approaches made
a lot of hypotheses about the within host virus dynamic
such as incubation and infectious periods R0 etc. Such
hypotheses may have a strong impact on influenza
propagation, which might lead to a misestimating of
climatic effects. In order to reduce the set of model hy-
potheses, we built an autoregressive model based on

the shape of the observed epidemics over time. We ex-
plained the intraseasonal variation of incidence of eleven
French regions and for nine epidemic years (an epidemic
year corresponds to October of a year until April of the
year after) with the climatic variables listed before, to
quantify their respective impact globally over all regions,
then specifically in each region for significant climatic
variables. The originality of our model is to consider
that only a fraction of the human population is susceptible
at the beginning of a year due to immunity acquired from
previous years. Considering loss of immunity in modeling
influenza epidemics might be important [33] even if al-
most no studies about influenza and climate take it into
account to our knowledge. Here we called susceptible
individuals people that could be infected and develop
symptoms, as we only had data about infected people
presenting symptoms. We then quantified potential ef-
fects of climatic factors on the interseasonal variation
of influenza epidemics. To do that we built an autore-
gressive linear model that explains the epidemic size
according to the average value of the climatic factors
over an epidemic year for the nine epidemic years and
the eleven French regions.

Methods
Data
Epidemiological data
Epidemiological data come from the Réseau des GROG
(Regional Influenza Surveillance Group) sentinel net-
work, which is a French surveillance network made up
of general practitioners and pediatricians. These physician
sentinels identify cases of respiratory pathogens including
influenza. Each region has on average 25 sentinels (from
10 to 75 depending on regions and epidemic years) in-
volved in the Réseau des GROG sentinel network. Every
week from October to April, they describe in reports the
intensity of their activity by giving the number of days they
worked, the number of medical acts performed and the
number of acute respiratory infection (ARI) defined as
the sudden onset of at least one respiratory sign (cough,
rhinitis, coryza, etc.) and at least one systemic sign suggest-
ing an acute infectious context (fever, fatigue, headache,
myalgia, malaise, etc.). In addition, sentinels randomly
realize nasal/pharyngeal swab samples on patients with
a less than 48 h ARI. Analysis of these samples allows
virological confirmation of influenza infections. Using
the weekly information reported by each physician sen-
tinel (clinical reports and virological samples analysis),
the Réseau des GROG sentinel network is able to pro-
vide an estimate of the number of influenza-infected
individuals called the influenza incidence.
First they define the ARI incidence, the number of

ARI cases (IARI), for a region and a week t as:
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IARI tð Þ ¼ Pedregion

PedGROG participants tð Þ ⋅ARIPed tð Þ
� �

þ GPregion

GPGROG participants tð Þ ⋅ARIGP tð Þ
� �

where ARIGP(t) and ARIPed(t) stand for the number of
ARI cases for week t, respectively, reported by general
practitioners (GP) and pediatricians from the Réseau des
GROG sentinel network. GPregion and Pedregion are, re-
spectively, the number of GP and pediatricians of a re-
gion. GPGROG participants(t) and PedGROG participants(t)
represent the number of GP and pediatricians who par-
ticipated in surveillance the week t, respectively. Age of
infected individuals was not taken into account assuming
that climatic factors have a uniform impact on influenza
spread within the population.
Second, the Réseau des GROG sentinel network esti-

mates influenza incidence relying on both the ARI in-
cidence and virological data. For each week of each
region, an influenza positivity rate (for all circulating
strains) is defined as the ratio of the number of posi-
tive samples on the total number of samples collected
over a week. It is calculated using a moving average of
order 3 taking into account the positive rate of the
week concerned and the ones before and after in order
to remove excessive fluctuations. We assumed that the
positive rate corresponds to the actual proportion of
influenza cases among ARI cases reported by the Ré-
seau des GROG sentinel network. The influenza inci-
dence (Iinfluenza) is defined as the ARI incidence weighted
by the positivity rate (T+):

Iinfluenza tð Þ ¼ IARI tð Þ ⋅Tþ tð Þ

Epidemiological data are available from the 2003–2004
epidemic year to the 2012–2013 epidemic year. However
we excluded the 2009–2010 epidemic year where the
H1N1 pandemic happened in order to study only seasonal
epidemics.

Climatic data
We chose eleven French regions: Aquitaine, Lower
Normandy, Brittany, Upper Normandy, Île-de-France,
Lorraine, Nord-Pas-de-Calais, Pays de la Loire, Picardy,
Provence-Alpes-Côte d’Azur (PACA) and Rhône-Alpes,
which have different climates. Aquitaine, Pays de la Loire,
Brittany, Lower Normandy, Upper Normandy and Nord-
Pas de Calais have an oceanic climate; Île-de-France,
Picardy and Lorraine have an oceanic climate with con-
tinental influences; PACA has a Mediterranean climate
and Rhône-Alpes climate is made up of continental,
Mediterranean and mountainous influences (see Fig. 1).

Climatic data were provided by Météo-France, the
French national meteorological service. We picked 65
meteorological stations (see Fig. 1) to collect data in
order to estimate climatic factors that globally describe
each region. We had information on temperature, relative
humidity, absolute humidity, rainfalls, sunshine duration
(very correlated to UV radiation), and wind speed (see
Additional file 1). It is not necessarily easy to choose effi-
cient climatic factors, as illustrated by Davis et al. [34]
who highlighted the challenge of selecting an appropriate
measure of the humidity covariate.
As epidemiological data were weekly available, we created

weekly climatic variables from the daily meteorological data
by averaging the daily data. The climatic variables built
are defined in Table 1.

Mathematical models
Climatic factors can impact influenza spread by both in-
creasing the transmissibility of the virus and/or by increas-
ing the susceptibility of its human host. One particularity
of our data set is that the variability in influenza incidence
is reported at different scales: the transmission scale
(intraseasonal variation) and the epidemic scale (intersea-
sonal variation). The impact of climatic factors may occur
at the two scales in which it will be observed in a slightly
different way.
At the transmission scale – during a seasonal epidemic

of a given year in a given region – favorable climatic (for
influenza diffusion) factors will lead to observe an increase
in disease (apparent) transmission. At this scale we will
search for significant associations between weekly varia-
tions of climatic factors and those of the disease apparent
transmission rate (defined below). Different observed epi-
demics (in all regions and epidemic years) will be treated
as independent replicates.
At the epidemic scale - the impact of a climatic factor

(in a region over an entire epidemic year) may mainly be
observed by the increase or decrease in the epidemic size
(the total number of infected individuals). At this scale we
will search for significant associations between the size of
the epidemic and the average value of the different cli-
matic factors (over an epidemic year in a region). Because
both scales imply different response variables, they will be
treated separately and independently.

Impact of climatic factors at the transmission scale
We built an auto-regressive statistical model with a lag
of one week to explain variations in the weekly influenza
incidence with climatic factors for eleven French regions
over nine epidemic years.
Our model is inspired from general epidemiological

models in which the number of infected and symptom-
atic individuals at time t, I(t), is modeled as a general
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function depending on i) the number of infected and
symptomatic at time t − 1, I(t − 1), and ii) the number of
individuals at time t who are susceptible to develop the
symptomatic form of the disease upon infection, S(t − 1):

I tð Þ ¼ β tð Þ⋅I t−1ð Þa⋅S t−1ð Þb ð1Þ

where a and b are constants (heterogeneity parameters)
extending the mass action type model into a more gen-
eral form, which has been shown as a relevant way to
approximate epidemic shapes in populations with het-
erogeneous mixing [35]. β is the apparent transmission
rate of the virus. a = b = 1 correspond to the mass action

model [36]. With a logarithm transformation the rela-
tionship becomes:

log I tð Þð Þ ¼ log β tð Þð Þ þ a⋅ log I t−1ð Þð Þ
þ b⋅log S t−1ð Þð Þ ð2Þ

In fact, the numbers of infected and susceptible individ-
uals are not directly observed. Î and Ŝ denote estimates of
the number of infected and susceptible individuals, re-
spectively. Considering that i) the number infected
and susceptible individuals are estimated and ii) there
is stochasticity in the transmission process, the relation-
ship (2) becomes:

Fig. 1 Map of France showing the eleven studied regions according to their climate: Aquitaine, Lower Normandy, Brittany, Upper Normandy,
Nord-Pas de Calais and Pays de la Loire in blue for their oceanic climate, Île-de-France, Lorraine, and Picardy in green for their oceanic climate with
continental influences, PACA in orange for its Mediterranean climate and Rhône-Alpes in yellow for its continental, Mediterranean and mountainous
influences, with the geographical location of the 65 meteorological stations (in red)
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log Î tð Þ� � ¼ log β tð Þð Þ þ a⋅ log Î t−1ð Þ� �
þ b⋅ log Ŝ t−1ð Þ� �þ ε1 ð3Þ

To analyze the impact of a climatic factor (Fc), we con-
sidered that the transmission rate is given by:

log β tð Þð Þ ¼ c⋅Fc þ d þ ε2 ð4Þ
where c quantifies the link between Fc and β, d is a constant
and ε2 is a random term independent of Fc modeling the
fluctuation in β independent of Fc, i.e., due to other factors.
Not all the human population is susceptible to influenza,

e.g., due to immunity acquired from previous infection.
However, giving an estimate of the influenza susceptible
population (non-immune population) is difficult due to
the seasonal variation of circulating strains, loss of immun-
ity phenomena and the fact that asymptomatic cases are
not detected. In this model, we keep a pragmatic statistical
view by considering that the susceptible pool linearly de-
creases every week with the infection of new individuals. So
the estimated susceptible population Ŝ for a week t and a
given region is given by:

Ŝ tð Þ ¼ N̂−Î cum t−1ð Þ ð5Þ
where Îcum is the number of infected individuals cumu-
lated from the beginning of the epidemic year to the
week t − 1. Note that introducing Îcum(t − 1) in the model
implicitly introduces a link between I(t) and I(t − 2), I(t − 3),
etc. in our model. N̂ is a statistical (constant in time) par-
ameter introduced to model a linear relationship between
the number of individuals that are susceptible to develop
the symptomatic form of the influenza infection and
the cumulated number of individuals that developed a

symptomatic influenza infection until t − 1. On a bio-
logical point of view, it can be interpreted as the total
number of individuals that could potentially develop an
observable form of the disease upon infection, but this in-
terpretation has to be taken with caution (see Discussion).
Combining equations (3), (4) and (5) we get:

Y tð Þ ¼ c⋅Fc þ d þ a⋅Y t−1ð Þ þ b⋅ log N̂−Î cum t−1ð Þ� �þ ε

ð6Þ
where Y(t) is the logarithm of the estimated number of
infected individuals. ε = ε1 + ε2 is the total residual error
and it is assumed to be distributed according to a Gaussian
centered distribution with a standard deviation σ.
We defined α̂ ¼ ITmax

N̂
, which provides an estimate of the

proportion of individuals who developed the disease (with
symptoms) in the pool of individuals that could have de-
veloped it. ITmax denotes here the time at which the influ-
enza surveillance ends (mid-April). α = 1 means that all
individuals who could potentially become sick acquired
the infection, and suggests that the disease has a sufficient
transmission to reach the entire susceptible pool of the
population. At the opposite α < 1 suggests that the virus
spread was not sufficient to reach the entire susceptible pool.
Since all the model coefficients (a, b, c, d and α) may

depend on both the region (R) and the epidemic year
(Y), there are many possible different models that can be
considered depending on how Y and R affect the coeffi-
cients. Models are synthesized as follows:

a Xð Þ; b Zð Þ; c Uð Þ; d Vð Þ; α Wð Þ
where X, Z, U, V and W are formulas depending on R
and Y. To take a few examples, be x a generic variable

Table 1 Definition of the climatic variables

Climatic variable Formula

Average temperature 1
days ⋅

1
stations ⋅

Xdays

j¼0

Xstations

s¼0
average daily temperature j; sð Þ

Daily variation of temperature 1
days ⋅

1
stations ⋅

Xdays

j¼0

Xstations

s¼0
maxdaily temperature j; sð Þ−mindailytemperature j; sð Þð Þ

Relative weekly variation of temperature Average temperature(weekt + 1) − Average temperature(weekt)

Absolute weekly variation of temperature |Average temperature(weekt + 1) − Average temperature(weekt)|

Average relative humidity 1
days ⋅

1
stations ⋅

Xdays

j¼0

Xstations

s¼0
average daily relative humidity j; sð Þ

Daily variation of relative humidity 1
days ⋅

1
stations ⋅

Xdays

j¼0

Xstations

s¼0
maxdaily relative humidity j; sð Þ−mindaily relative humidity j; sð Þð Þ

Relative weekly variation of relative humidity Average relative humidity(weekt + 1) − Average relative humidity(weekt)

Absolute weekly variation of relative humidity |Average relative humidity(weekt + 1) − Average relative humidity(weekt)|

Average absolute humidity 1
days ⋅

1
stations ⋅

Xdays

j¼0

Xstations

s¼0
average daily absolute humidity j; sð Þ

Daily variation of absolute humidity 1
days ⋅

1
stations ⋅

Xdays

j¼0

Xstations

s¼0
maxdaily absolute humidity j; sð Þ−mindaily absolute humidity j; sð Þð Þ

Relative weekly variation of absolute humidity Average absolute humidity(weekt + 1) − Average absolute humidity(weekt)

Absolute weekly variation of absolute humidity |Average absolute humidity(weekt + 1) − Average absolute humidity(weekt)|

Average wing speed 1
days ⋅

1
stations ⋅

Xdays

j¼0

Xstations

s¼0
average daily wind speed j; sð Þ

Rainfall height 1
days ⋅

1
stations ⋅

Xdays

j¼0
average daily rainfalls height j; sð Þ

Sunshine duration 1
days ⋅

1
stations ⋅

Xdays

j¼0
average daily sunshine duration j; sð Þ
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that can be a, b, c… x(0) means that x = 0 in the model;
x(1) means that x is constant (intercept model); x(R)
means that x depends on the region; x(R + Y) means that
x depends on both the region and epidemic year in an
additive way and x(R ⋅ Y) in a multiplicative way.
The most complicated model considered (i.e., the

complete model) is not the model where all parameters
depend multiplicatively on R and Y (R ⋅ Y), which would
contain too many parameters to be tractable. Since a
and b are shape parameters for the spread of the epidemic,
it is reasonable to assume that they are characteristics of
the region (a(R) and b(R)). d affects the average transmis-
sion rate of the virus. It can be different between regions
(which show different demographic characteristics) and
between epidemic years (because the circulating influenza
strain is different from one epidemic year to the next), but
it is reasonable to consider that it will only be slightly
affected by the interaction between these two factors
(d(R ⋅ Y)). That is why the most complicated model
considered was a(R), b(R), c(R), d(R + Y), α(R ⋅ Y).
Model parameters were inferred using maximum like-

lihood estimation. The analysis was performed following
two steps. In the first step, we tried to reduce as much
as possible the complexity of the model that will be used
to test climatic factors and estimate their impact. An
AIC criterion was used to select the model having the
lowest AIC. If the difference between two AIC values is
less than two, the most parsimonious model is chosen.
In that procedure, the coefficient c was fixed to zero
(model c(0)) in order to select a model that is independ-
ent of climatic data. In the second step, climatic factors
were introduced in the model selected in step 1. In this
section, we search how increases or decreases in the
value of climatic factors during an epidemic can impact
the apparent transmission rate. Global variations in the
average value of the climatic factors between regions
and epidemic years are not interesting here. That is why
climatic factors were first centered within years and re-
gions: for a climatic factor f measured during a week t,
an epidemic year Y and a region R, we define:

φt;Y ;R ¼ f t;Y ;R− f Y ;R
�

where f Y ;R
�

denotes the mean of climatic factor f over
the surveillance period of epidemic year Y in region R.
To allow easy comparison between the estimated coeffi-
cients of the fifteen climatic factors, each of them was
then reduced:

Ft;Y ;R ¼ φt;Y ;R

sdφ

where sdφ stands for the standard deviation of the
variable φ. over all epidemic weeks t, epidemic year Y
and region R.

In total, fifteen climatic factors were tested, leading to
potentially important problems of multiple testing. Since
climatic factors are not independent, applying a simple
Bonferroni correction would lead to a loss of statistical
power [37]. Instead, we preferred a multiple testing cor-
rection based on permutation tests [38]. The idea of the
permutation test we developed here is to keep the same
values for all the climatic factors but to shuffle the week
indexes, within a given region and a given epidemic year
(in order to break the potential association between any
climatic factor and the observed course of the epidemic).
Mathematically, let us call Ft,Y,R the value of the climatic
factor F during the tth week of region R and epidemic
year Y. Let us call P a permutation of the week indexes
t. The permuted climatic factors (F) associated to per-
mutation P in region R and year Y will be defined by:
FP(t),Y,R. The main advantage of this permutation proced-
ure is that it conserves the within epidemic year and re-
gion correlation structure between the climatic factors.
One permutation of the climatic factors is then defined
as a set of permutations (one for each epidemic year in
each region) leading to a set of permuted climatic factors
in all regions and for all epidemic years. Note that these
permuted factors have strictly no reason to be correlated
with the apparent disease transmission rate (the permu-
tation is purely random) and hence can be considered as
realizations of the null hypothesis H0 “the apparent
transmission rate is not linked to any climatic factor”.
We used the absolute value of the maximum estimated

climatic factor coefficients (cmax) as a test statistic for
H0. We generated 10,000 permutations of climatic fac-
tors (see above) and for each one we calculated cmax,
leading to 10,000 independent realizations of cmax under
H0. The 95 % quantile of the distribution defines a sig-
nificant threshold. Climatic factors are considered being
significantly linked to the apparent transmission rate if
the absolute value of their c estimate from data is above
the defined threshold. Model parameters are estimated
using maximum likelihood. Standard errors of the esti-
mations of the model parameters were determined using
the square roots of the diagonal elements of the covari-
ance matrix (the inverse of the negative of the expected
value of the Hessian matrix). Model implementation and
permutation tests were performed in Python.

Impact of climatic factors at the epidemic scale
To evaluate the impact of climatic factors at the epidemic
scale we considered the ratio of cumulated number of in-
fected individuals across the entire epidemic period (from
the first week of epidemic of the first region in epidemic
to the last week of epidemic of the last region in epidemic)
to the total population – an indicator of the epidemic
size – as a response variable (ES).
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As individuals infected a previous year are immunized
the year after if there is not much influenza virus evolution
(i.e., antigenic drifts), the epidemic size of a previous year
determines the number of susceptible individuals the year
after. We expected a negative correlation between the epi-
demic size of a previous year and the one the year after,
because if the epidemic size was high on the previous year,
there will be less susceptible individuals the year after,
leading to a smaller epidemic. That is why we considered
an autoregressive linear model in order to take into ac-
count the correlation between the epidemic size of an
epidemic year and the one from the previous epidemic
year. We used a logarithm transformation in order to
fit the normality and the homoscedasticity of residuals.
The model is defined as:

log ESY ;R
� � ¼ a0 þ aY þ aR þ b⋅ log ESY−1;R

� �þ c⋅FY ;R
�

where a0, b and c are constant model parameters and aY
(respectively aR) models potential systematic variations
in the epidemic size between epidemic years (respectively
regions). These two terms account for the fact that some
regions may be more prone to important epidemics (e.g.,
due to population demography) and the strains circulating
some epidemic years can be more virulent or affect a larger
set of the human population due to more important genetic
differences with the strains of the previous epidemic years.
FY ;R
�

denotes the mean value of climatic factor F over the
entire epidemic year.
Foremost we selected model parameters (aY, aR and b)

using an AIC criterion and then we assessed the impact
of climatic factors.
Multiple hypothesis testing was corrected as in the

previous section. Values of Y and R were shuffled together
(pairs of values for Y and R were randomly re-attributed to
all epidemics). For a permutation P, new climatic factors
were built as FP Y ;Rð Þ

�
. The advantage of this permutation

procedure is that, as above, it keeps the covariance struc-
ture between the climatic factors. As previously the permu-
tation test is used to determine a significant threshold for
the c coefficients using the maximum absolute estimated
value of the c coefficients as a statistic.
Model parameters were estimated using the classical

tools of linear models implemented in R3.1.2 [39].

Results
Impact of climatic factors at the transmission scale
In order to reduce the complexity of the model we per-
formed an AIC selection without climatic factors. Ac-
cording to the AIC criterion we chose the model with all
coefficients (a, b, d and α) independent of regions and
epidemic years (see Table 2). Then we built models add-
ing each climatic factor to the chosen model. Finally we

made permutations to test the impact of the climatic
factors as described in the Methods section.
Six climatic factors appeared significant: the average

absolute humidity, the average temperature, the average
relative humidity, the daily variation of relative humidity,
the sunshine duration and the daily variation of absolute
humidity (see Fig. 2). The parameters and impacts of
these climatic factors are summarized in Table 3. In order
to search for confounding effects we built a principal com-
ponent analysis (PCA) on the climatic data using R.3.1.2
[39] and the package ade4 [40–42]. The correlation circle
of the PCA shows the correlations between variables (see
Fig. 3). Two groups of variables are observed: on the one
hand average temperature, average absolute humidity and
diary variation of absolute humidity positively correlated
and, on the other hand, average relative humidity nega-
tively correlated with diary variation of relative humidity
and sunshine duration.
Besides the evaluation of impact of climatic factors at

the transmission scale, the model built allowed the estimate
of the susceptible population for an epidemic year N̂ with
the definition of α̂ that provides an estimate of the propor-
tion of individuals who developed the disease in the pool of
individuals that could have developed it. In the fifteen cli-
matic models, estimates of α were included between 0.98
and 1 with a very low standard deviation (< 0.01).

Impact of climatic factors at the epidemic scale
Regional and seasonal variations appear in the epidemic
size (see Fig. 4). In order to evaluate the impact of climatic
factors on these variations we first chose a model accord-
ing to the AIC criterion and second we built models with
each climatic factor and tested the climatic impacts with
permutations.
The auto-regressive coefficient b was not retained from

the AIC selection procedure (see Table 4). That is why we
chose a model only considering seasonal and regional vari-
ations to evaluate the impact of climatic factors.
No climatic factors appeared significant at the epidemic

scale (see Fig. 5) meaning that none of the climatic factors
well explained the variation of epidemic size between re-
gions and epidemic years.

Table 2 AIC selection at the transmission scale

Model Number of parameters AIC criterion

a(1), b(1), c(0), d(1), α(1) 5 1455.00

a(1), b(R), c(0), d(1), α(1) 15 1460.48

a(1), b(1), c(0), d(R), α(1) 15 1462.00

a(1), b(1), c(0), d(1), α(Y) 13 1468.29

a(1), b(1), c(0), d(1), α(R) 15 1471.00

a(1), b(1), c(0), d(Y), α(1) 13 1801.52

a(R), b(1), c(0), d(1), α(1) 15 1824.58
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Considering that variations in epidemic size could not
be explained by our (measured) climatic variables, we
then tried to decompose these variations into three
sources. First variations in region characteristics (e.g.,
population size or non-measured climatic factors) can
lead to systematic differences between regions. Second,
temporal variations (e.g., in strain characteristics) can lead

to systematic increase or decreased of epidemic sizes in all
regions. Third, local conditions (in given epidemic years
and regions) may also affect epidemic sizes. To quantify
these three sources of variations, we built a model con-
sidering epidemic year and region as random variables:
log(ESY,R) = a0 + aY + aR + ε, where aY (respectively aR)
is distributed according to a Gaussian centered distribution

Fig. 2 Theoretical distribution under the null hypothesis with the threshold (the 95th quantile) in green and the |c| values in red, standing for the
climatic impacts of each factor estimated for the eleven regions and for the nine epidemic years (to 2003–2004 till 2012–2013 except 2009–2010)
at the transmission scale. 1: Average temperature, 2: Daily variation of temperature, 3: Relative weekly variation of temperature, 4: Absolute weekly
variation of temperature, 5: Average relative humidity, 6: Daily variation of relative humidity, 7: Relative weekly variation of relative humidity, 8:
Absolute weekly variation of relative humidity, 9: Average absolute humidity, 10: Daily variation of absolute humidity, 11: Relative weekly variation
of absolute humidity, 12: Absolute weekly variation of absolute humidity, 13: Average wind speed, 14: Rainfalls height, 15: Sunshine duration
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with a standard deviation σY. (respectively σR). ε stands for
the residual variations, taking into account the local varia-
tions of a given epidemic year and region, it is distributed
according to a Gaussian centered distribution with a stand-
ard deviation σε. The homoscedasticity of the residuals is
shown in Additional file 2: Figure S1.

Parameters were estimated with R.3.1.2 [39] using the
package lme4 [43, 44]. We found σ̂Y ¼ 0:036, σ̂R ¼ 0:013
d σ̂ ε ¼ 0:0217 meaning that variations from one epidemic
year to another one, from one region to another one and
due to local conditions account for 50.9, 18.4 and 30.7 %,
respectively.

Discussion
In the present paper, we presented the results of the ana-
lysis of the statistical link between influenza spread and
fifteen climatic factors. Data were obtained from the
French Réseau des GROG sentinel network. The net-
work is based on voluntary practitioners who i) record
acute respiratory infection and ii) randomly send nasal
samples for an antigenic confirmation (or rejection) of
influenza infection. Based on those two pieces of infor-
mation, the Réseau des GROG sentinel network provides
influenza incidence estimates of clinical cases. Two

Table 3 Global climatic impacts

Climatic factor c Standard
deviation

Impact (%)

Average absolute humidity −0.0612 0.0108 5.94

Average temperature −0.0570 0.0109 5.54

Average relative humidity −0.0505 0.0120 4.92

Daily variation of relative humidity 0.0436 0.0124 4.46

Sunshine duration 0.0340 0.0106 3.46

Daily variation of absolute humidity −0.0307 0.0117 3.02

Fig. 3 Correlation circle of the principal component analysis (PCA) on climatic data. A: Average temperature, B: Average absolute humidity, C:
Average relative humidity, D: Daily variation of relative humidity, E: Sunshine duration, F: Daily variation of absolute humidity. The PCA explains
85.47 % of the variance with its first two axes explaining, respectively, 48.73 and 36.74 %
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metrics were used for linking virus spread to climatic
data: weekly incidence data of clinical cases and the epi-
demic size – measured as the total number of recorded
clinical cases over the epidemic period.
Results of the analysis failed to isolate any correlation

between epidemic size and climatic factors. Regarding
weekly incidence data, we considered that incidence at
time t was first affected by both the number of infected
and susceptible individuals at time t − 1, as it is classic-
ally assumed in epidemic dynamic models of infectious
diseases [36]. Six climatic factors were found to be sig-
nificantly linked to influenza spread: average temperature,
average absolute and relative humidity, daily variations of
absolute and relative humidity as well as sunshine dur-
ation. However, a principal component analysis revealed
that upon these six factors, two groups of three highly cor-
related factors could be separated. On a practical point of
view, this implies that within each of the two groups, it is
likely that only one factor has a biological link to influenza
spread, the two remaining factors being linked to the
disease spread because they are linked to the first factor
(confounding effect).

The first group of factors is made up of average
temperature and absolute humidity, and daily variations
of absolute humidity. The role of a cold and dry weather
on influenza spread has been highlighted from laboratory
studies [19, 20] and modeling approaches in temperate
countries [13, 15, 16, 21] including France [45]. Moreover
models that included weekly variations of both temperature
and absolute humidity in Israel [46] and in New York City
[47] predicted reliable influenza epidemic estimations (bet-
ter estimations with both factors than only one). That is
why both the average temperature and absolute humidity
seem to play an important role on the influenza spread.
The second group of factors is made up of average

relative humidity, daily variations of relative humidity
and sunshine duration. Both laboratory [11] and simula-
tion [14] studies enhanced the impact of the relative hu-
midity. About sunshine duration, a decrease of sunshine
might favor influenza spread [31] but surprisingly our
results showed a positive impact of sunshine duration
on influenza epidemic spread. That is why the average
relative humidity might impact influenza spread whereas
sunshine duration might be a confounding factor.
Overall, the impact of the significant factors remained

relatively low (a few percent). This is not surprising
when we compare our finding with what is found in the
literature (3 % impact of absolute humidity in the
Netherlands - [21], less than 2 % impact of both absolute
humidity and temperature on influenza mortality in the
USA - [15]). However, it is important to raise reasonable
hypotheses for explaining why the impact of climatic
factors is found so low. First, low impacts can arise from
the presence of important noise in data. The Réseau des
GROG sentinel network is based on a limited number of
voluntary practitioners, leading to noise in incidence

Table 4 AIC selection at the epidemic scale

Model Number of parameters AIC criterion

ESY,R = a0 + aY + aR + b ⋅ ESY − 1,R 19 −241.64

ESY,R = a0 + aY + aR 18 −243.42

ESY,R = a0 + aY 8 −225.85

ESY,R = a0 + b ⋅ ESY − 1,R 2 −157.11

ESY,R = a0 1 −144.70

ESY,R = a0 + aY + b ⋅ ESY − 1,R 9 −234.99

ESY,R = a0 + aR 11 −135.74

Fig. 4 Boxplot of the ratio of cumulated number of infected individuals across the entire epidemic period to the total population (Y) of the
eleven regions according to the nine epidemic years
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estimates. Second, in order to obtain relatively reliable
incidence estimates, we had to average incidence over
entire regions. Climate and disease spread can be dispar-
ate within a region, leading to weaken the link between
climatic factors and disease spread. Third, the model,
which has a lag of one week (linking incidence at time t
with the number of susceptible and infected individuals
at time t − 1), can be a bit too simple. Actually simple

compartmental models may not be sufficient to describe
properly an influenza epidemic. Models are becoming
more complex by, for example, taking into account more
heterogeneous influenza transmission in the population
(e.g., agent-based model) and including a contact net-
work among people [48–50]. Finally, correlation between
influenza spread and single climatic factors can be too
simplistic. Climate can have a strong impact on disease

Fig. 5 Theoretical distribution under the null hypothesis with the threshold (the 95th quantile) in green and the |c| values in red, standing for the
climatic impacts of each factor estimated for the eleven regions and for the nine epidemic years (to 2003–2004 till 2012–2013 except 2009–2010)
at the epidemic scale. 1: Average temperature, 2: Daily variation of temperature, 3: Relative weekly variation of temperature, 4: Absolute weekly
variation of temperature, 5: Average relative humidity, 6: Daily variation of relative humidity, 7: Relative weekly variation of relative humidity, 8:
Absolute weekly variation of relative humidity, 9: Average absolute humidity, 10: Daily variation of absolute humidity, 11: Relative weekly variation
of absolute humidity, 12: Absolute weekly variation of absolute humidity, 13: Average wind speed, 14: Rainfalls height, 15: Sunshine duration
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spread, but on a more complex way involving several
factors and potential interactions between these factors.
Such combinations of factors were not considered in the
model because it would have led to a huge number of
hypotheses’ testing. Such an investigation of the most
relevant combinations of climatic factors would be more
relevantly achieved using descriptive statistics, but this
was not the purpose of our study.
Another important question arising from our results is

about of the disparity of the link of climatic factors with
influenza spread using weekly incidence data and epi-
demic size data. The first obvious potential explanation
is the lower statistical power associated to epidemic size
data. Epidemic size is estimated only once per year while
incidence is estimated every week. So epidemic size data
contain less statistical information. An interesting alter-
native hypothesis could be that epidemic size and weekly
incidence data capture different biological phenomena.
Basically, incidence (corrected by the number of suscep-
tible and infected individuals) may vary between weeks
according to climatic factors for two reasons: i) because
individuals are more susceptible to develop the clinical
form of the infection and ii) because infection is more
likely, i.e., the virus transmission rate increases. Epidemic
size is schematically the result (product) of two phenom-
ena: i) the proportion of individuals in the region that are
susceptible to develop the clinical form of the disease
upon infection and ii) the fraction of these individuals that
will be reached by the virus, i.e., that will effectively be-
come infected. If the latter phenomenon is linked to the
virus transmission rate, the link is not linear. In particular,
for large enough transmission rates, all susceptible individ-
uals become infected during an epidemic and this term is
poorly affected by the transmission rate. Interestingly, in
that case, epidemic sizes are mainly an indicator of indi-
viduals’ susceptibility and hence contain information that
differs from that of weekly incidence data.
The proportion of the susceptible (to the clinical disease)

population that ultimately develops the disease is an im-
portant quantity for both data analysis interpretation and
disease management. In data analysis, it will tell us how to
interpret epidemic size data. When all susceptible individ-
uals acquire the infection, then epidemic size is an indicator
of the proportion of susceptible individuals in the popula-
tion, i.e., the proportion of individuals that are in a healthy
state (in terms of innate and acquire immunity) that does
not permit them to control the disease upon infection. On
a management point of view, if all individuals acquire the
infection, this means that the virus transmission rate is
high and reducing it will not necessarily lead to reduce
its impact.
In our study, we introduced a term that we interpreted

as the proportion of susceptible individuals who ultim-
ately got infected. This is an interesting result, but which

should be interpreted with great caution. First susceptibility
is here defined as the ultimate development of the disease
upon infection. It is hence not necessarily equivalent to
susceptibility defined by antibody profiles. Second, it is
important to recall that it is primarily a model param-
eter introduced for statistical convenience (i.e., a shape
parameter). The fact that it equals one in our model
only means that the decay in disease incidence at the
end of the epidemic can be explained without having to
assume any susceptible pool that would have escaped
the infection. Since the study was not designed for esti-
mating this biological quantity, we invite the reader not
to interpret it as a formal estimation procedure of the
proportion of susceptible individuals, but as a point
raising interesting questions.
Several improvements could be brought to our analysis.

First, it would be interesting to differentiate between the
different subtypes of influenza. Influenza epidemics are
often due to several subtypes that generate potentially
shifted epidemics [51]. Practically, in our model this would
imply that the number of susceptible individuals does not
necessarily decreases with the cumulated number of influ-
enza cases from all subtypes, but is subtype specific. Even
though the use of permutation tests tends to reduce this
problem, it would still be interesting to study the different
subtypes separately because they might be differentially af-
fected by climatic factors. Unfortunately, this information
was not available in our data set.
The second interesting improvement that could be

brought to our model is the consideration of different
age-classes. Indeed, influenza is known to spread differen-
tially within and between age-classes [52–54]. However,
introducing age-classes in our model would tend to make
it more complex. In the current paper we adopted a prac-
tical point of view by considering only the global spread of
the epidemic without considering the heterogeneity of in-
dividuals that may exist within a population (age-classes,
social classes, job-dependent degree of exposure, etc.).

Conclusion
Proper modeling of the relationship between climatic
variables and infectious diseases spread and impact pre-
sents a challenging task. We presented a way to conciliate
statistical and dynamical models of infectious diseases in a
way that keeps the simplicity of statistical approach while
introducing key knowledge about infectious dynamics
(such as the decay of incidence after the epidemic peak).
We performed our study on two important influenza

response variables at two levels: intra- and inter-annually.
Linking variations of weekly incidence data with climatic
factors is relevant because it allows anticipating the decay
or increase in the number of cases of influenza in the weeks
to come. The epidemic size is also a very important meas-
ure because it allows quantifying the impact of influenza
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according to climatic factors. This is especially valuable in
the context of global climate changes to anticipate the fu-
ture impact of influenza.
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