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Abstract

Background: Estimating the optimal threshold (and especially the confidence interval) of a quantitative biomarker
to be used as a diagnostic test is essential for medical decision-making. This is often done with simple methods that
are not always reliable. More advanced methods work well but only for biomarkers with very simple distributions. In
fact, biomarker distributions are often complex because of a natural heterogeneity in marker expression and other
heterogeneities due to various disease stages, laboratory equipments, etc. Methods are required to estimate a
biomarker optimal threshold in case of heterogeneity and complex distributions.

Methods: A previously described Bayesian method developed for normally distributed biomarkers is applied to
two flexible distributions; namely, a Student-t and a mixture of Dirichlet processes. Here, numerical studies assess
the adequacy of the previous method with both distributions. Two applications are presented: the diagnosis of
treatment failure after prostate cancer treated by ultrasound and the early diagnosis of cancers of the upper
aerodigestive tract.

Results: Bayesian inference provided reliable credible intervals in terms of bias and coverage probability. The
two distributions analysed gave meaningful clinical interpretations in both applications.

Conclusions: Reliable methods can be used to estimate a biomarker optimal threshold, even in case of complex
distributions.

Keywords: Sensitivity and specificity, Diagnostic marker, Optimal cut-point, Semi-parametric Bayesian method
Background
Nowadays, more and more biomarkers are used for
screening, diagnosis, prognosis, or monitoring. Some well-
known examples are the prostate-specific antigen (PSA)
in prostate cancer [1] and all novel proteomic and gen-
omic markers [2,3]. The comparison of the diagnostic
accuracy of a set of continuous biomarkers is generally
performed through the comparison of their Receiver
Operating Characteristic (ROC) curves [4]. A ROC curve
reflects the ability of a marker to classify correctly the
tested subjects regardless of a specific threshold; it is thus
helpful in choosing the most discriminating biomarker.
However, after this choice, a threshold value must be
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determined before the use of the marker as a diag-
nostic test.
The optimal threshold is defined as the one that leads

to the highest sum of test sensitivity and specificity
(within this sum, different weights may be given to sen-
sitivity and specificity). The sensitivity and the specificity
are often estimated from the empirical distribution func-
tion of the biomarker in diseased and non-diseased indi-
viduals but this method is not always the best one in
terms of bias or root mean square error [5]. Moreover,
with this method, only a bootstrap confidence interval is
available though the bootstrap coverage probability is
not always acceptable for optimal thresholds [6]. Other
non-parametric or semi-parametric methods have been
proposed; they are based on the smoothing of the ROC
curve using loess procedures [7] or on the parametric
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smoothing of the ROC curve [8]; but, here again, the
confidence interval is based on a bootstrap approach.
More efficient methods assume a given parametric dis-

tribution for the biomarker in the diseased and non-
diseased group. With some specific distributions (e.g.,
normal, log normal, gamma, or normal after Box-Cox
transformation), the optimal threshold is given by an ex-
plicit formula that depends on the distribution parame-
ters, and the threshold's confidence interval can be
obtained using the delta method [5,6]. However, all bio-
markers do not always follow such simple distributions.
There are often outlying measurements and the mea-
surements may be obtained with different laboratory
equipments having various precisions, which lead to a
mixture of distributions with different variances. The
presence of various disease stages may also lead to a
mixture of distributions with different means. In such
cases, there is no explicit formula for the optimal
threshold. An estimate can be obtained by numerical algo-
rithms, but the delta method is no more applicable to build
the confidence interval.
This article relies on a Bayesian method that estimates

the optimal threshold of a biomarker; however, this
method was previously applied only to biomarkers nor-
mally distributed [9]. It is here extended to two different
distributions able to cope with heterogeneity of the vari-
ances or the means: the Student-t distribution (particu-
larly useful in case of heterogeneous variances) and a
mixture of Dirichlet processes (useful in case of hetero-
geneous means and variances). Simulations were first per-
formed to assess the adequacy of the proposed methods.
The methods were next applied to two examples: the diag-
nosis of prostate-cancer recurrence and the diagnosis of
the cancers of the upper aerodigestive tract.
This article shows that, using appropriate methods for

threshold determination, rational medical decisions can
be made despite patient heterogeneity.

Methods
The Bayesian method to estimate the biomarker optimal
threshold and its credible interval
This section clarifies briefly the meaning of “optimal
threshold” and summarizes the Bayesian method origin-
ally used to estimate this threshold and its credible interval
in normally distributed biomarkers [9]. By convention, it
will be assumed that high values of the marker are indica-
tive of the presence or the exacerbation of the disease.

Determination of the optimal threshold using the
decision theory
The optimal threshold is often defined as the value that
best separates the two biomarker distributions relative to
the diseased and non-diseased subjects; i.e., the value
that maximizes the sum of sensitivity plus specificity
(also called the Youden index). The benefits of a good
classification and the costs of a misclassification in terms
of health status as well as the prevalence of the disease
can also be taken into account [10]. For example, for a
screening test of a low-prevalence disease, a low thresh-
old should be chosen to favour specificity. This leads to a
generalized Youden index that gives unequal weights to
sensitivity and specificity:

U cð Þ ¼ Sen cð Þ þ Spe cð Þ � R; R ¼ NC
NB

� 1−π
π

ð1Þ

NB/NC is the ratio of the net benefit of detecting a
diseased subject to the net cost of mistakenly classifying
a healthy subject as diseased [11], and π is the preva-
lence of the disease.

Bayesian optimal-threshold estimation
Maximizing the Youden (or generalized Youden) func-
tions requires the estimation of sensitivity and specificity
at different thresholds; hence, knowing the distributions
of the marker values in diseased and non-diseased sub-
jects. Parametric distributions are assumed in diseased
and non-diseased subjects. In a Bayesian paradigm,
priors are defined for the parameters of these parametric
distributions, possibly non-informative. The posterior
distributions of these parameters can be obtained using
Bayes theorem. It is assumed that K values of these pa-
rameters can be sampled from their posterior distribu-
tions, possibly using MCMC algorithms [12]. A Youden
function is defined for each of these K values and maxi-
mized using a numerical method such as the Newton–
Raphson method. The values obtained for each of the
Youden functions form a sample from the posterior dis-
tribution of the optimal threshold. The mode, the mean,
or the median of this distribution provides an estimate of
the optimal threshold. A 1 − α credible interval can be
obtained using the empirical α/2 and 1 − α/2 quantiles of
this distribution (the quantile method) or the highest
posterior density (HPD) region [13].
Originally applied only to normally distributed bio-

markers, this method can be used regardless of the dis-
tributions of the marker values in the diseased and non-
diseased subjects, with possibly different kinds of distri-
butions. The sole constraint is being able to sample from
the posterior distribution of the parameters of these dis-
tributions. However, this method may not be robust to
a misspecification of the distributions of the marker
values, especially when the measurement heterogeneity
is high in one group or in both groups. The following
sections describe two flexible distributions able to deal
with heterogeneity: the Student-t distribution (used with
heterogeneity in the variance of the measurements) and
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a mixture of Dirichlet processes (used with heterogeneity
in the mean and the variance of the measurements).

Heterogeneity in the variance of biomarker measurements
Optimal threshold with Student-t distribution
When measurements are repeated in subject, for ex-
ample a non-diseased subject, a variation of the marker
value might be observed due to intra-subject variability.
This variation may follow a normal distribution; how-
ever, in the whole non-diseased population, the distribu-
tion of the marker may not be normal because that
intra-subject variability may itself vary between subjects.
Another source of heterogeneity in the variance is the
fact that measurements are analysed by different labora-
tories having different equipment precisions. The marker
distribution in each laboratory may be Gaussian, for ex-
ample, in non-diseased subjects, but non-Gaussian over
all laboratories due to precision variability.
In the case of heterogeneity in the variance of the

measurements, a Student-t distribution might be used
(instead of a normal one) because it can be considered
as a mixture of an infinite number of normal laws
centred around the same value but with a variance dis-
tributed according to the inverse of a chi-square distri-
bution. Hence, the Student-t distribution may deal with
the heterogeneity of the variance among subjects or la-
boratories. This is also and mainly a robust alternative
to the use of a normal distribution in presence of out-
liers due to measurement errors, because the Student-t
distribution has longer tails than its normal counterpart.
Let (μ, σ2, ν) denote the parameters of the Student-t

distribution (mean, variance, degrees of freedom, re-
spectively). Non-informative prior distributions might
be used for μ and σ2, such as a normal distribution
centred on zero with high variance for μ and a uniform
distribution for log(σ). For 1/ν, a uniform distribution be-
tween 0 and 1 can be chosen as proposed by Gelman
et al. [14]. Efficient methods to sample from the posterior
distribution of the parameters of a Student-t distribution
using the Gibbs sampling algorithm are given by Gelman
et al. [14]. Software WinBUGS can be used to perform
those MCMC calculations [15] (an example is given
in the Additional file 1). The Youden function is then
calculated for each sample value using the cumulative
distribution function of the Student-t distribution and
maximized using a numerical method such as the
Newton–Raphson method. This leads to the posterior
distribution of the optimal threshold.

Simulations
Three types of simulations were performed to test the
proposed method, with different marker distributions: a
true normal law, a Student-t law, or a mixture of two
normal laws with different variances. In each case, the
relative bias of the optimal threshold estimate stemming
from the mean, the median, and the mode of the poster-
ior distribution were calculated, as well as the mean
width, and the coverage probability of the 95% credible
interval obtained with the quantile or the HPD method.
The calculations were performed over 5 000 simulated
data sets. The NB/NC ratio was set to one, and the
prevalence to 0.5. The theoretical optimal threshold
was calculated using explicit formulae or the Newton–
Raphson algorithm. For comparison, the optimal threshold
was also estimated using the empirical boxcox, and kernel
methods proposed by Fluss et al. [5], and, in each case, the
associated bootstrap 95% confidence interval.

Marker values truly distributed according to a normal
law (Design 1) Marker values were generated from a
normal distribution, with mean −0.3 and standard devi-
ation σ0 in N0 non-diseased subjects, and mean −0.2 and
standard deviation σ1 in N1 diseased subjects. The pos-
terior distribution of the optimal threshold was esti-
mated assuming a Student-t distribution, then a normal
distribution in each group. The following parameter
values were used: N0 =N1 = {50, 100} and σ0 = σ1 = {0.03,
0.05, 0.07}. Another set of simulations was performed
with unequal standard deviation: (σ0, σ1) = {(0.07, 0.03),
(0.03, 0.07)}. Results are also given in the Additional
file 2 with unequal sample sizes: (N0, N1) = {(100, 50),
(100, 75)}. The standard deviation values were chosen
lower than the difference between the means of the two
groups to prevent a total overlap of marker distributions.
The sample sizes were chosen to be of the same magnitude
as those found in diagnostic studies.

Marker values truly distributed according to a
Student-t law (Design 2) Marker values were gener-
ated from a normal distribution in the non-diseased
group, with mean −0.3 and standard deviation 0.05,
then from a Student-t distribution in the diseased
group, with mean −0.25, standard deviation 0.05, degrees
of freedom ν, and 100 subjects in each group. Four values
of ν were used: {1, 4, 8, 12}, the first corresponded to a
distribution with a lot of outliers and the last to a distri-
bution similar to the normal one. The posterior distribu-
tion of the optimal threshold was estimated assuming
first a Student-t distribution then a normal distribution
in each group.

Marker distributed according to a mixture of two
normal laws in the diseased subjects (Design 3)
Marker values were generated from a normal distribu-
tion in the non-diseased group, with mean −0.3 and
standard deviation 0.05, and from a mixture of two nor-
mal distributions in the diseased group, both centred
on −0.25 but one with a standard deviation of 0.05 and
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the other, associated only to a proportion p of subjects,
with a standard deviation of σ2. One hundred diseased
values and one hundred non-diseased values were gener-
ated. In the diseased group, the mixture reflects the het-
erogeneity in measurements (heterogeneity attributed to
subjects or to lab equipments). It can also reflect the
presence of a proportion p of outlying measurements,
with over dispersion. The following parameter values
were used: σ2 = {0.075, 0.10} and p = {0.1, 0.2, 0.3}. For
smaller values of σ2, the two distributions in the diseased
group would be indistinguishable.

Application
The above-described method was applied to a study in-
volving 289 subjects followed-up after a high-intensity
focused ultrasound (HIFU) treatment for prostate can-
cer. The treatment was delivered at Edouard Herriot
hospital (Lyon, France) between 2000 and 2007. The
follow-up consisted of biopsies and regular PSA mea-
surements. Among these subjects, 150 had one positive
biopsy during follow-up and were considered as cases of
treatment failure or cases of prostate cancer recurrence
(diseased subjects); the remaining 139 who had no posi-
tive biopsy were considered as non-diseased subjects.
According to the current French Legislation, an obser-

vational study that does not change routine management
of patients does not need to be declared or submitted to
the opinion of a research ethics board.
The PSA nadir (i.e., the lowest PSA measurement dur-

ing a given subject follow-up) was used as a good criter-
ion to detect treatment failure, and hence to trigger
biopsies [1]. A threshold is required to use this criterion
as a diagnostic test. The distribution of the logarithm of
the PSA-nadir in non-diseased subjects was not found to
depart from a normal distribution (Figure 1) but this
was not the case in the diseased subjects because of
some outlying log-PSA nadirs.
−4 −3 −2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Patients without cancer recurrence

log(nadir)

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

observed
student
normal

Figure 1 Cumulative distribution of the PSA nadir. Cumulative distribu
recurrence, along with the predicted cumulative distributions using a norm
A Student-t distribution was assumed in both groups
and 2000 samples from the posterior distribution of
the parameters of the Student-t law in each group
were considered to estimate the optimal PSA-nadir
threshold. The prevalence was fixed to 52%, which corre-
sponds to the prevalence observed in the prospective
study. In this example, the NB/NC value was set set to
1.5 (equivalent to triggering biopsies above 40% prob-
ability of treatment failure).

Heterogeneity in the mean and the variance of biomarker
measurements
Optimal threshold using a mixture of Dirichlet processes
Among diseased subjects, there may be an inter-subject
heterogeneity in marker measurements due to various
stages of the disease. When this heterogeneity is linked
to factors such as age or sex, these factors may be taken
into account and one marker threshold may be proposed
for each factor combination. However, heterogeneity
may be linked to factors unknown at the time of
marker measurement such as the stage or the severity of
the disease. Hence, when the marker is normally distrib-
uted at each stage of the disease, the marker measure-
ments over all diseased subjects are the result of a
mixture of normal distributions with different means and
different variances.
In this section, the distribution of the marker measure-

ments in each group was modelled by a mixture of
normal laws, with means and variances distributed ac-
cording to a Dirichlet process (G), which led to a mix-
ture of Dirichlet processes [16,17]. Dirichlet processes
are used in the Bayesian context and can be seen as
mass-point distributions. They are characterized by two
parameters: G0, which can be considered as a prior dis-
tribution for G, and M that characterizes the degree of
belief in G0. Hence, the number and location of the
mass-points in G are estimated from the data and from
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the prior distributions. Parameter M can be estimated
from the data using a Gamma prior as suggested by
Escobar and West [17]. The full specification of the
model is given in the Additional file 3, as well as the
sampling techniques. Globally, all priors chosen were
uninformative or little informative.
The mixture of Dirichlet processes belongs to the class

of semi-parametric methods in Bayesian modelling and
are flexible enough to fit a lot of distributions, especially
mixture of distributions.

Simulations (Design 4)
When the true distribution of the marker is normal in
diseased and non-diseased subjects, there is no loss of
performance using a mixture of Dirichlet processes in-
stead of a normal distribution in terms of relative bias,
coverage probability, and mean width of the credible
interval (data not shown).
The properties of the method described in this section

were assessed in the case of marker measurements dis-
tributed according to a mixture of two normal laws in
the diseased group (0.5 ×N(0.05, σ1

2) + 0.5 ×N(−0.25, σ2
2)),

and a simple normal law in the non-diseased group
(N(−0.3, 0.072)). N marker values were generated in each
group. The accuracy of the method was calculated over 5
000 simulated data sets. The following parameter values
were used: N = {30, 50, 100, 200}, σ1 = {0.07, 0.08, 0.10}, and
σ2 = {0.05, 0.07}. These standard deviations were chosen
according to the means so that a clear mixture of distribu-
tions can be identified in the diseased group. The results
obtained using a single normal distribution to model the
biomarker distribution in the non-diseased group and also
a single normal distribution for the diseased group are also
reported. The NB/NC ratio was set to one, and the preva-
lence to 0.5. For comparison, the optimal threshold was
also estimated using the empirical boxcox, and kernel
methods proposed by Fluss et al. [5], and, in each case, the
associated bootstrap 95% confidence interval.

Application
The method described in this section was applied to the
diagnosis of cancers of the upper aerodigestive tract
using Cyfra 21–1, a tumour marker. A case–control
study was conducted between January 1997 and October
2002 in the Department of Otolaryngology-Head and
Neck Surgery (Lyon-Sud hospital, Lyon, France). It in-
cluded 300 patients treated for a cancer of the upper
aerodigestive tract and 71 voluntary blood donors as-
sumed to be in good health and free from cancer or
inflammatory diseases of the upper aerodigestive tract.
The aim was to estimate Cyfra optimal threshold for the
early diagnosis of those cancers.
Here too, according to the current French Legislation,

this did not need the opinion of a research ethics board.
A normal distribution fitted fairly the distribution of
the logarithms of Cyfra values in non-diseased subjects
(Figure 2) but not in diseased subjects. The diseased
subjects had various disease stages: stage 1 localized can-
cers, stages 2 and 3 cancers with lymph node invasion,
and stage 4 cancers with distant metastases. The distri-
butions of Cyfra values in each stage differed by their
means and variances (Figure 3); hence, the distribution
over all diseased subjects was the result of a mixture of
distributions.
A mixture of Dirichlet processes was used to model

Cyfra distribution in diseased and non-diseased subjects.
To calculate the posterior distribution of the Cyfra’s op-
timal threshold, 3 000 iterations of the Gibbs sampling
algorithm were considered. The NB/NC ratio was set by
the clinicians to 4 and the prevalence was considered to
be 8/1000, an estimate of the French prevalence of can-
cers of the upper aerodigestive tract [18].

Results
Heterogeneity in the variance of biomarker
measurements
Simulations
This section describes the simulations results regarding
the use of the Student-t distribution instead of the nor-
mal one in case of heterogeneity in the variance of bio-
marker measurements. The coverage symmetry of the
credible intervals for all simulation designs is given in
the Additional file 4, as well as the values of the optimal
threshold and the Youden index.

Marker values truly distributed according to a nor-
mal law (Design 1) In all simulations with equal vari-
ances and sample sizes in each group, the relative bias
was lower than 0.1% and had the same order of magni-
tude with both the normal and Student-t distributions
(Table 1). In case of unequal variances or unequal sam-
ple sizes, the relative bias was higher with the Student-t
than with the normal distribution, but remained lower
than 0.75%. The optimal thresholds were generally
similar whatever the estimate kept from the posterior
distribution (mode, median, or mean). The coverage prob-
ability of the 95% credible intervals were around 95% and
similar with both distributions and both calculation
methods (quantile or HPD). The credible interval mean
widths were also similar and decreased with the increase
in sample size. The credible intervals were symmetric with
the normal distribution, but generally asymmetric with
the Student-t distribution, except in case of equal vari-
ances and sample sizes. Among the other methods tested
(Additional file 2), the boxcox method gave similar re-
sults to the normal and Student-t methods in terms of
relative bias and coverage probability of the 95% confi-
dence interval. The empirical method gave more biased
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Figure 2 Cumulative distribution of Cyfra 21–1 values. Cumulative distribution of Cyfra 21–1 values in subjects with and without a cancer of
the upper aerodigestive tract along with the predicted cumulative distributions using a normal distribution or a mixture of Dirichlet processes.
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results, with a coverage probability farther from 95% than
the other methods.
Hence, even when the true distribution of the marker

was normal, there was no great loss of efficiency in using
a Student-t distribution to estimate the optimal threshold
in the proposed simulations. More generally, outside the
context of optimal threshold estimation, the Student-t is
often a good alternative to the normal distribution [19].

Marker values truly distributed according to a
Student-t law (Design 2) The relative bias of the opti-
mal threshold estimated using the normal distribution de-
creased along with the increase of ν but was always higher
than the one obtained with the Student-t distribution,
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Figure 3 Boxplots of the logarithms of Cyfra 21–1 values
according to the cancer stage. Boxplots of the logarithms of Cyfra
21–1 values in subjects with a cancer of the upper aerodigestive
tract according to the cancer stage.
even with ν = 12 (Table 2). The coverage probability of
the credible interval stemming from the normal distribu-
tion was insufficient at small values of ν but increased
closer to 95% with increasing ν values, whereas the cover-
age probability of the credible interval obtained with the
Student-t distribution was always around 95%. Hence,
when the true distribution of the marker is Student-t
with a small ν value, the normal distribution is not suit-
able to estimate the optimal threshold.
The boxcox and kernel methods were generally a little

more biased than the Student-t method (Additional file 2).
The empirical method was a little less biased than the
Student-t method for small ν values. The coverage prob-
abilities were generally farther from 95% with the empir-
ical, boxcox, and kernel methods than with the Student-t
method, and the 95% confidence intervals were a little
wider.

Marker distributed according to a mixture of two
normal laws in the diseased subjects (Design 3) The
relative bias using a Student-t distribution was never
above 0.2%, but smaller than the one obtained by using
a normal distribution (Table 3). In some cases, differ-
ences in relative biases were very large. The coverage
probability of the credible interval obtained with the
Student-t distribution was always close to 95%. Using
the normal distribution, this was true only when the
proportion of subjects with over dispersed marker values
was low and that over dispersion limited.
Hence, though the Student-t distribution represents a

mixture of an infinite number of normal distributions,
it gives satisfactory results in estimating the optimal
threshold of a marker when that mixture includes only
two distributions per group, both centred on the same
value. The Student-t distribution is also well-suited for
markers with normal distributions and outlying mea-
surements, which is not a rare case. Higher values of σ2
were not tested; however, a standard deviation more than



Table 1 Simulation results for Design 1

Relative bias* Coverage probability† CI mean width†

Mode Median Mean Quantile HPD Quantile HPD

N0 N1 σ0 σ1 Gauss t Gauss t Gauss t Gauss t Gauss t Gauss t Gauss t

100 100 0.07 0.07 −0.00022 −0.00014 −0.00003 −0.00016 −0.00003 −0.00018 0.945 0.948 0.943 0.944 0.022 0.021 0.022 0.021

100 100 0.05 0.05 0.00006 0.00015 −0.00003 0.00021 −0.00003 0.00021 0.947 0.951 0.945 0.944 0.014 0.015 0.014 0.015

100 100 0.03 0.03 −0.00019 0.00010 −0.00020 0.00016 −0.00020 0.00011 0.948 0.956 0.945 0.951 0.010 0.011 0.010 0.011

50 50 0.07 0.07 0.00124 0.00114 0.00114 0.00106 0.00115 0.00104 0.949 0.953 0.948 0.950 0.032 0.031 0.032 0.031

50 50 0.05 0.05 0.00004 0.00030 0.00002 0.00031 0.00002 0.00030 0.950 0.951 0.949 0.948 0.020 0.021 0.020 0.022

50 50 0.03 0.03 −0.00038 0.00071 −0.00042 0.00072 −0.00043 0.00070 0.944 0.941 0.940 0.940 0.015 0.016 0.015 0.016

100 100 0.07 0.03 0.00047 0.00567 −0.00047 0.00518 −0.00015 0.00530 0.949 0.941 0.950 0.934 0.012 0.013 0.012 0.013

100 100 0.03 0.07 −0.00067 −0.00544 0.00025 −0.00492 −0.00006 −0.00510 0.946 0.938 0.946 0.935 0.012 0.013 0.012 0.013

50 50 0.07 0.03 0.00057 0.00727 −0.00120 0.00608 −0.00055 0.00651 0.948 0.944 0.946 0.940 0.018 0.019 0.018 0.019

50 50 0.03 0.07 −0.00114 −0.00719 0.00063 −0.00610 0.00000 −0.00651 0.953 0.948 0.949 0.942 0.018 0.019 0.018 0.019
*Relative bias of the mode, the median, and the mean estimates of the optimal threshold.
†Coverage probability and credible interval (CI) mean width found with the quantile and the Highest Posterior Density (HPD) region method.
N0 and N1: number of non-diseased and diseased subjects – σ0 and σ1 : standard deviation of the distribution of the marker in non-diseased and diseased subjects – Gauss:
Gaussian distribution – t: Student-t distribution.
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twice as large in one group than in another group may be
uncommon within clinical contexts.
Whatever the simulation setting, the threshold esti-

mates were similar with the mode, the median, or the
mean of the posterior distribution. The credible intervals
were also similar with either the quantile or the HPD
method. Hence, the Student-t distribution is a robust al-
ternative to the normal distribution. The empirical, box-
cox, and kernel methods were generally more biased and
their coverage probability was farther from 95% than the
Student-t method, except for distributions close to a
simple normal one (σ2=0.075) with the boxcox method
(Additional file 2).

Application: PSA nadir threshold
In the estimation of the optimal threshold of PSA nadir,
the Student-t distribution seemed to fit the biomarker
distribution in subjects with treatment failure (diseased
subjects), contrarily to the normal distribution (Figure 1).
This can be explained by the presence of outlying PSA-
nadir values in this group. With a Student-t distribution,
Table 2 Simulation results for Design 2

Relative bias*

Mode Median Mean Q

ν Gauss t Gauss t Gauss t Gau

1 0.2905 0.0055 0.2944 0.0103 0.2929 0.0082 0.00

4 0.0431 0.0029 0.0437 0.0040 0.0435 0.0036 0.53

8 0.0147 0.0014 0.0149 0.0019 0.0148 0.0017 0.86

12 0.0086 0.0009 0.0086 0.0013 0.0086 0.0011 0.91
*Relative bias of the mode, the median, and the mean estimates of the optimal thre
†Coverage probability and credible interval (CI) mean width found with the quantile
ν: Degrees of freedom of the Student-t distribution in diseased subjects – Gauss: Ga
the mode, the median, and the mean of the optimal
PSA-nadir threshold distribution were 0.152, 0.154, and
0.153, respectively. The 95% credible interval was [0.105,
0.208] with the HPD method and [0.090, 0.198] with the
quantile method. With a normal distribution, the mode,
the median, and the mean of the optimal PSA-nadir
threshold were 0.100, 0.099, and 0.098, respectively. The
95% credible interval was [0.057, 0.145] with the HPD
method and [0.053, 0.142] with the quantile method.
As mentioned previously, the Student-t distribution
reproduced better the empirical cumulative distribution
of the PSA nadir in the diseased group than the normal
distribution, even if the normal distribution was close
to the Student-t one. But, as shown in this example, a
little change in the distribution function can lead to
substantial differences in the optimal threshold esti-
mates. The optimal threshold obtained with a mixture
of Dirichlet processes led to a sensitivity of 85.5%, 95%
CI [80.8%, 89.2%] and a specificity of 28.9%, 95% CI
[22.5%, 35.5%]. Using the empirical method, the optimal
threshold was 0.170 (95% CI: [0.109, 0.228]), it was
Coverage probability† CI mean width†

uantile HPD Quantile HPD

ss t Gauss t Gauss t Gauss t

0 0.937 0.000 0.932 0.033 0.029 0.034 0.030

0 0.953 0.532 0.955 0.024 0.022 0.024 0.022

3 0.951 0.868 0.952 0.023 0.021 0.023 0.021

8 0.951 0.920 0.955 0.022 0.020 0.022 0.020

shold.
and the Highest Posterior Density (HPD) region method.
ussian distribution – t: Student-t distribution.



Table 3 Simulation results for Design 3

Relative bias* Coverage probability† CI mean width†

Mode Median Mean Quantile HPD Quantile HPD

σ2 p Gauss t Gauss t Gauss t Gauss t Gauss t Gauss t Gauss t

0.10 0.3 0.0280 −0.0011 0.0287 0.0001 0.0285 −0.0004 0.736 0.956 0.734 0.951 0.025 0.024 0.024 0.023

0.10 0.2 0.0211 −0.0011 0.0215 −0.0001 0.0214 −0.0004 0.804 0.957 0.804 0.954 0.024 0.022 0.024 0.022

0.10 0.1 0.0123 0.0005 0.0125 0.0010 0.0124 0.0007 0.889 0.959 0.887 0.955 0.023 0.021 0.023 0.021

0.075 0.3 0.0084 −0.0019 0.0085 −0.0015 0.0085 −0.0017 0.924 0.953 0.923 0.953 0.023 0.022 0.023 0.021

0.075 0.2 0.0062 −0.0010 0.0063 −0.0007 0.0063 −0.0008 0.935 0.952 0.936 0.952 0.023 0.021 0.023 0.021

0.075 0.1 0.0029 −0.0008 0.0030 −0.0007 0.0030 −0.0007 0.947 0.954 0.942 0.953 0.022 0.020 0.022 0.020
*Relative bias of the mode, the median, and the mean estimates of the optimal threshold.
†Coverage probability and credible interval (CI) mean width found with the quantile and the Highest Posterior Density (HPD) region method.
σ2: variance of the distribution in the subjects with over dispersion – p: proportion of subjects with over dispersion – Gauss: Gaussian distribution – t: Student-t distribution.
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0.098 with the boxcox method (95% CI: [0.045, 0.147]),
and 0.161 with the kernel method (95% CI: [0.109,
0.199]). In this example, the boxcox method is not ap-
propriate because it is not possible to find a common
mathematical transformation of the biomarker values in
the diseased and non-diseased groups. An example of R
[20] code to calculate the posterior distribution of such a
threshold with Student-t distributions is given in the
Additional file 1.
This example highlights the interest of the Student-t

distribution in estimating the optimal threshold of a bio-
marker in presence of outlying measurements, which is
not rare in the field of medicine.

Heterogeneity in the mean and the variance of biomarker
measurements
Simulations (Design 4)
The relative bias of the optimal threshold estimated using
a mixture of Dirichlet processes was generally smaller than
the one obtained using normal distributions, except when
σ1 = σ2, and decreased with the sample size (Table 4). With
the mixture of Dirichlet processes, the bias was always less
than 3.5% for N between 100 and 200, and less than 6.8%
for N below 100. There were little differences between the
estimations obtained with the mode, the median, or the
mean of the posterior distribution, but no indication that
one estimator is always better than the others. The cover-
age probability of the 95% credible interval was always
close to 95% with the mixture of Dirichlet processes for
N between 100 and 200, and far from 95% using normal
distributions. There were small differences between the
coverage probabilities obtained with the HPD and those
obtained with the quantile method. Here again, there was
no indication that one method would be always better
than the other. The credible intervals were generally
asymmetric. The relative bias of the optimal threshold
estimated with a mixture of Dirichlet processes was
generally smaller than the one obtained with the empir-
ical, the boxcox, or the kernel method, except for N = 30
(Additional file 2) and the coverage probability was gener-
ally closer to 95% with the former than with the three latter
methods.

Application: Cyfra 21–1 optimal threshold
In patients with no cancer of the upper aerodigestive
tract, a mixture of Dirichlet processes or a normal distri-
bution reproduced well the empirical distribution of
Cyfra (Figure 2). In the diseased group, the fit to the data
was good, highlighting the ability of the mixture of
Dirichlet processes to fit complex distributions due to
mixtures. The mode, the median, and the mean of the
posterior distribution of the optimal Cyfra 21–1 thresh-
old were 0.844, 0.841, and 0.838, respectively. The 95%
credible interval was [0.739, 0.930] with the HPD
method, which is quite close to the interval obtained
with the quantile method; i.e., [0.738, 0.930]. The thresh-
old obtained led to a sensitivity of 34.0%, 95% CI [30.3%,
38.0%], and a specificity of 99.9%, 95% CI [98.6%,
99.9%]. Let us remember here that the analysis was car-
ried out in the context of a low-prevalence disease where
the maximisation of the generalized Youden index leads
to a threshold with a high specificity. Using the empir-
ical method, the optimal threshold was 0.700 (95% CI:
[0.600, 1.000]); it was 0.792 with the boxcox method
(95% CI: [0.725, 0.865]) and 0.769 with the kernel method
(95% CI: [0.665, 0.903]).
We note here that the use of Cyfra for the early diag-

nosis of cancers of the upper aerodigestive tract in the
general population is most convenient at stages 1 or 2;
subjects at stages 3 and 4 would be already hospitalized.
Though the results of this example are not fully clinic-
ally applicable, the example was used mostly because
Cyfra distribution from stage 1 to stage 4 was not repro-
ducible using standard distributions.

Discussion
Within the context of estimating the optimal threshold
of a biomarker, rational approaches are rather exceptions,



Table 4 Simulation results for Design 4

Relative bias* Coverage probability† CI mean width†

Mode Median Mean Quantile HPD Quantile HPD

N σ1 σ2 Gauss Dirichlet Gauss Dirichlet Gauss Dirichlet Gauss Dirichlet Gauss Dirichlet Gauss Dirichlet Gauss Dirichlet

200 0.07 0.07 0.0392 −0.0294 0.0405 −0.0087 0.0400 −0.0177 0.623 0.947 0.631 0.926 0.020 0.066 0.020 0.069

200 0.08 0.05 0.1657 −0.0064 0.1668 0.0281 0.1664 0.0082 0.000 0.956 0.000 0.943 0.020 0.080 0.020 0.087

200 0.10 0.05 0.1717 −0.0107 0.1728 0.0167 0.1724 0.0023 0.000 0.959 0.000 0.945 0.020 0.069 0.021 0.074

100 0.07 0.07 0.0386 −0.0394 0.0412 −0.0093 0.0403 −0.0223 0.792 0.944 0.797 0.922 0.029 0.082 0.029 0.086

100 0.08 0.05 0.1644 −0.0074 0.1666 0.0340 0.1658 0.0112 0.000 0.960 0.000 0.947 0.029 0.093 0.029 0.100

100 0.10 0.05 0.1713 −0.0118 0.1731 0.0206 0.1725 0.0039 0.000 0.961 0.000 0.948 0.025 0.077 0.026 0.082

50 0.07 0.07 0.0373 −0.0413 0.0425 −0.0063 0.0406 −0.0215 0.879 0.971 0.884 0.952 0.042 0.100 0.041 0.096

50 0.08 0.05 0.1623 0.0007 0.1668 0.0483 0.1651 0.0243 0.017 0.969 0.020 0.960 0.041 0.114 0.041 0.106

50 0.10 0.05 0.1689 0.0032 0.1736 0.0431 0.1719 0.0244 0.012 0.963 0.015 0.962 0.042 0.102 0.042 0.096

30 0.07 0.07 0.0333 −0.0219 0.0426 0.0015 0.0392 −0.0081 0.923 0.982 0.929 0.974 0.055 0.102 0.054 0.098

30 0.08 0.05 0.1576 0.0394 0.1652 0.0705 0.1624 0.0589 0.111 0.961 0.127 0.962 0.054 0.117 0.053 0.111

30 0.10 0.05 0.1643 0.0498 0.1723 0.0679 0.1693 0.0629 0.091 0.944 0.104 0.951 0.055 0.104 0.054 0.100
*Relative bias of the mode, the median, and the mean estimates of the optimal threshold.
†Coverage probability and credible interval (CI) mean width found with the quantile and the Highest Posterior Density (HPD) region method.
N: number of subjects in each group – σ1 and σ2: standard deviation of the normal distributions in diseased subjects – Gauss: Gaussian distribution – Dirichlet:
mixture of Dirichlet processes.
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mainly because there is no single method to apply what-
ever the biomarker. Parametric methods provide stable
confidence intervals but, up to now, were constrained to
very special cases and required homogeneity in marker dis-
tributions in diseased and non-diseased subjects. Unfortu-
nately, when it comes to biology, homogeneity is rather an
exception.
The present article is an application of a previously

published Bayesian method to estimate the optimal
threshold of a biomarker to two distributions among the
most able to take into account heterogeneity in marker
measurements among subjects. The Student-t distribu-
tion is well-suited when the marker is normally distrib-
uted but with different subgroup variances owing, for
example, to different lab equipments. This distribution is
also a robust solution in presence of outlying measure-
ments, which is a frequent situation. Besides, simulation
results showed that the Student-t distribution can be used
even when the marker value distribution is truly Gaussian;
this results sometimes in an acceptable increase in the
relative bias (lower than 0.75%). Anyway, the Gaussian dis-
tribution is a theoretical concept; moreover, the simulation
results have shown the benefit of the Student-t distribu-
tion over the normal distribution even in case of a little
departure from the normal distribution, due for example
to outlying measurements. Other methods, such as the
empirical, boxcox, or kernel methods [5], do not give bet-
ter results in this context; they are generally more biased
or have coverage probabilities farther from 95% than the
Student-t method, except in very specific cases. A mixture
of Dirichlet processes has also been used to reflect, for ex-
ample, a mixture of marker values due to different stages
or severities of the disease. Rücker and Schumacher [21]
have already used mixture of distributions but they fixed
the number of distributions within mixtures. The flexibil-
ity of a mixture of Dirichlet processes allows coping with a
lot of distribution shapes. In cases of a mixture of distribu-
tions leading to a multimodal distribution, a mixture of
Dirichlet processes gives good results in terms of bias and
coverage probability when the sample size is at least
50 per group. The empirical, boxcox, and kernel methods
do not outperform the mixture of Dirichlet processes in
this case. For sample sizes smaller than 50 per group,
the empirical method is less biased than a mixture of
Dirichlet processes, but the coverage probabilities are
farther from 95% than with a mixture of Dirichlet pro-
cesses. For the Student-t distribution and the mixture of
Dirichlet processes, the credible intervals were generally
asymmetric, but this is a common problem in estimating
optimal thresholds [10].
The Bayesian inference is very useful for optimal thresh-

old estimation because, frequently, due to the distribution
used to model the biomarker in the diseased and non-
diseased groups, there is no explicit formula for the opti-
mal threshold, and hence, the delta method cannot be used
to obtain a confidence interval; e.g., when Student-t distri-
butions are used.
Generally, when an appropriate distribution is found

to model the biomarker (good agreement between the
empirical and the modeled cumulative distribution
functions), this distribution should be used, combined
with Bayesian inference to obtain an estimate and a cred-
ible interval of the optimal threshold. According to our
simulations, when there is no appropriate distribution
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and the empirical distribution function is unimodal and
symmetric, a Student-t distribution is a good option.
When a distribution is not symmetric or when it is as-
sumed that there is a mixture of distributions within a
group (owing to the severity of the disease in the diseased
group, for example), a mixture of Dirichlet processes
seems to be a good option providing the sample size is at
least 50 per group. When the sample size is less than
50 per group, there is no specific recommendation; how-
ever, a mixture of Dirichlet processes tends to give cover-
age probabilities closer to 95% than the other methods but
not always too close to 95%.
The Bayesian method to estimate the optimal thresh-

old can be criticized for being difficult to implement;
however, many tools are now available to perform Bayesian
inference, like WinBUGS. Once a sample from the poster-
ior distribution of the parameters of the marker distribu-
tion in each group has been drawn, the computation of the
posterior distribution of the optimal threshold becomes
straightforward.
In the present simulations, the NB/NC ratio was arbi-

trarily fixed to one and the prevalence to 0.5. The
optimal threshold being the intersection between the
probability density curves of the marker multiplied
by R in the non-diseased group, a change in NB/NC or
in prevalence would only change the shapes of the
curves whose intersection has to be found. For brevity,
the results were presented only for several variances in
the diseased and non-diseased groups and for various
biomarker distributions; changing the variances of the
distributions or the distributions themselves is equiva-
lent to changing the shape of the curves. Anyway, it is
agreed that the estimation of the NB/NC value is a diffi-
cult task that requires discussions with the physicians
and even the patients, and maybe information elicit-
ation, but this is not the subject of the present article.
Moreover, the proposed method does not take into ac-
count the uncertainty about the prevalence and the
NB/NC value. From the sample size of the study from
which the prevalence estimate comes, one can sample
K values in the posterior distribution of the prevalence
and use these values to calculate the K Youden functions.
This takes into account the statistical uncertainty about
the prevalence. When NB/NC values are obtained from
experts, one can use the distribution of these values and
sample K NB/NC values from this distribution. This
takes into account the uncertainty about the NB/NC
value when the expert values are relatively close but not
exactly equal. When the experts give very different NB/NC
values, it is better to estimate one threshold for each NB/
NC value.
Non-informative priors were used for the present

examples and simulations but informative priors can
be used in case of prior knowledge on the marker
distributions. This is particularly useful for moderate-size
data samples.
More flexible distributions could have been used in-

stead of a mixture of Dirichlet processes, such as Polya
trees [22], but these distributions would have increased
the complexity of the calculations. Moreover, the mix-
ture of Dirichlet processes is very common in Bayesian
inference with semi-parametric models [23,24]. Exten-
sions to skewed Student-t –or normal– distributions are
possible [25]. The literature dedicated to the optimal
threshold has proposed methods that deal with measure-
ment errors [26], markers with mass at zero [27], or de-
tection thresholds [8]. The present methods deal with
heterogeneity and can be extended to take into account
the three latter problems in the inference on the param-
eters of the biomarker distribution.
The present work may be extended to the estimation

of the optimal threshold of a risk-score stemming from a
prediction model using methods similar to the ones pre-
sented by Subtil and Rabilloud [9]. Flexible distributions
(Student-t distribution or mixture of Dirichlet processes)
would make easier the modelling of a risk-score distribu-
tion in the diseased and non-diseased groups.
Conclusions
The major contribution of the present article was the
consideration of the natural heterogeneity of marker
measurements between subjects in estimating the opti-
mal threshold of a biomarker with a complex distribu-
tion. Whereas this is difficult to carry out with standard
frequentist methods, (especially regarding a reliable con-
fidence interval), the Bayesian paradigm seems particu-
larly suitable. The Student-t distribution and the mixture
of Dirichlet processes are useful distributions in case of
heterogeneity in the mean or variance of the biomarker
measurements, or in case of outlying values. It is hoped
that with a method applicable to a very wide range of
biomarkers, more rational approaches will now be used
to estimate correctly the optimal threshold of interesting
biomarkers.
Additional files

Additional file 1: WinBUGS and R codes for biomarkers modeled
with a Student-t distribution. WinBUGS code to sample from the
posterior distribution of the parameters of a Student-t distribution, and R
function to sample from the posterior distribution of the optimal
threshold of a marker following a Student-t distribution in the diseased
and non-diseased groups.

Additional file 2: Additional simulation results. Relative bias of the
optimal threshold assuming a Gaussian or a Student-t distribution with
the coverage probability and the mean width for Design 1 (unequal
number of subjects in diseased and non-diseased subjects). Relative bias
of the optimal threshold using the empirical, boxcox, and kernel
methods, with their associated bootstrap 95% confidence intervals.

http://www.biomedcentral.com/content/supplementary/1472-6947-14-53-S1.pdf
http://www.biomedcentral.com/content/supplementary/1472-6947-14-53-S2.pdf
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Additional file 3: Parameterization of the mixture of Dirichlet
processes model and sampling techniques.

Additional file 4: Additional results for simulation Designs 1, 2, 3
and 4. Left and right coverage probability of the credible interval assuming
a Gaussian or a Student-t distribution for simulation Designs 1, 2, 3, and a
Gaussian or a mixture of Dirichlet processes for simulation Design 4, with
the associated theoretical threshold as well as Youden index.
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