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Abstract 17 

1. Spatial autocorrelation jeopardizes the validity of statistical inference, e.g., correlation and 18 

regression analysis. Restricted randomization methods can account for the effect of spatial 19 

autocorrelation in the observed data by building it into an empirical null model for hypothesis 20 

testing. This can be achieved e.g. based on conditional simulation, which fits a highly 21 

parameterized geostatistical model to the observed spatial structure, or, for data observed on a 22 

regular transect or grid, with Fourier spectral randomization methods that can flexibly model 23 

spatial structure at any scale. This paper uses Moran eigenvector maps to extend spectral 24 

randomization to irregularly spaced samples. 25 

2. We present different algorithms to perform restricted randomization to suit different types of 26 

research questions: individual randomization of each variable, joint randomization of a group 27 

of variables while keeping within-group correlations fixed, and randomization with a fixed 28 

correlation between original data and randomized replicates (e.g., as input for simulation 29 

studies). The performance of the proposed Moran spectral randomization methods for 30 

regularly and irregularly spaced samples is assessed with correlation analysis of simulated 31 

data.  32 

3. Moran spectral randomization closely matched the spatial structure of original simulated data 33 

sets, with identical or nearly identical Moran’s I values and power spectra, depending on the 34 

algorithm. In correlation analysis of two stationary spatially autocorrelated variables, Moran 35 

spectral randomization produced correct type I error rates for stationary spatial data, even for 36 

very small and highly irregular samples, but was sensitive to linear trend. When one or both 37 
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variables lacked spatial structure, Moran spectral randomization tests were more conservative 38 

than correlation t-tests.  39 

4. The proposed Moran spectral randomization method requires a minimum of parameterization 40 

and is able to address multivariate data with spatial structure at multiple scales, with the 41 

option of controlling levels of correlation with the original data. It can provide technically 42 

unlimited numbers of randomizations even for small samples while closely maintaining the 43 

spatial characteristics of uni- or multivariate data at all spatial scales. The method is 44 

applicable for correlation analysis of stationary, autocorrelated spatial or temporal series. 45 

Further research should assess whether the method can be extended to multiple regression 46 

analysis. 47 

Keywords 48 

Spatial autocorrelation, Fourier analysis, Moran eigenvector maps, correlation, time series 49 

analysis 50 

Tweetable Abstract (max. 120 characters) 51 

Moran spectral randomization methods for irregularly spaced, spatially autocorrelated, uni- 52 

and multivariate data. 53 

54 
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Introduction 55 

Ecological data often exhibit spatial autocorrelation, which poses challenges for statistical 56 

inference (Legendre 1993). Spatial autocorrelation may affect parameter estimates, type I error 57 

rates and statistical power of tests, including significance tests for correlation, partial correlation 58 

and regression coefficients that are widely used in ecology (Kühn & Dormann 2012). Methods 59 

for dealing with autocorrelation in correlation inference include modified parametric tests with 60 

adjustments for effective sample size (Dutilleul et al. 1993; Dutilleul, Pelletier & Alpargu 2008) 61 

and restricted randomization tests, which preserve the observed spatial autocorrelation and build 62 

it into the null model of the statistical hypothesis test (Fortin & Jacquez 2000; Fortin, Jacquez & 63 

Shipley 2012). For data sampled on a regular grid, this may be achieved by permuting observed 64 

values with toroidal shift methods (Upton & Fingleton 1985), conditional simulation methods 65 

that generate new values with similar spatial structure as the observed data (Fortin & Dale 2005), 66 

or with spectral randomization methods based on Fourier or wavelet analysis (Deblauwe, Kennel 67 

& Couteron 2012).  68 

Conditional autoregressive simulation (Cressie 1991) can be applied to irregularly spaced 69 

data, but involves fitting geostatistical models to the observed data and may require substantial 70 

computing time (Fortin & Jacquez 2000). Complications may arise (i) if the observed spatial 71 

pattern (e.g., species abundance) results from multiple processes (e.g., dispersal, competition, 72 

predation) acting at different spatial scales, so that the observed data exhibit spatial structure at 73 

multiple scales; (ii) when analyzing multivariate data, where it may be necessary to randomize 74 

one set of variables simultaneously, keeping their correlations constant, while randomizing their 75 

correlations with a second set of variables (e.g., to test associations between functional groups of 76 
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species while keeping associations within groups constant); or (iii) when the spatial relationships 77 

do not depend on geographic distance per se but on some definition of adjacency formalized in a 78 

neighbor matrix (e.g., in a step-wise model of gene flow within a network of discrete populations, 79 

or if the data relate to spatial units such as polygons, rather than point locations). The first two 80 

situations may require large numbers of geostatistical parameters to be fitted, whereas in the third 81 

case, distance-based geostatistical modeling may not be appropriate. Furthermore, conditional 82 

simulation methods are not suitable for simulating replicates with a fixed correlation with the 83 

original data (e.g., as needed for simulation studies to test performance of estimation methods in 84 

regression analysis of spatial data; Beale et al. 2010) as they control the parameters of the 85 

generating process, not the properties of the observed pattern. This paper provides a new 86 

approach, Moran Spectral Randomization (MSR), to generate spatially-structured random 87 

variables. Compared to existing approaches, MSR has the main advantages that (i) it can deal 88 

with irregularly spaced data, (ii) it considers a spatial neighbor matrix, rather than geostatistical 89 

modeling, and thus requires a minimum of parameterization, (iii) it preserves the multiscale 90 

properties of spatial structures, (iv) and it is able to address multivariate data or (v) to control 91 

levels of correlation with the original data.  92 

Conceptually, MSR is related to Fourier spectral randomization (FSR). FSR is based on 93 

Fourier analysis that decomposes an observed, regularly spaced spatial or temporal series into a 94 

set of orthogonal sinusoids with different frequencies, i.e., spatial or temporal scales (harmonic 95 

regression; Graybill 1976) using discrete Fourier transform (DFT; Cooley & Tukey 1965; Gauss 96 

1866). The power spectrum of the series thus describes how the variance of the data is distributed 97 

over the frequency components into which it may be decomposed, i.e., the squared correlation of 98 



Moran spectral randomization 6  

 

each sinusoid with the observed data quantifies the intensity of the observed pattern at the scale 99 

of the sinusoid.  100 

In MSR, sinusoids are replaced by Moran eigenvector maps (MEM; Borcard & Legendre 101 

2002; Dray, Legendre & Peres-Neto 2006; Griffith & Peres-Neto 2006; Peres-Neto & Legendre 102 

2010) that can also be applied to irregular samples (Borcard & Legendre 2002). MEM are 103 

obtained through the eigen analysis of a spatial neighbor matrix which provides orthogonal 104 

eigenvectors maximizing the spatial autocorrelation measured by Moran’s I (Moran 1950). 105 

Hence, MEM provides vectors allowing the decomposition of the variance of observed data, 106 

similar to the power spectrum in Fourier analysis.  107 

We show that MSR provides technically unlimited numbers of randomizations even for 108 

small samples while maintaining the spatial characteristics of uni- or multivariate data at all 109 

spatial scales. Specifically, we show how to derive (i) replicate autocorrelated patterns under the 110 

null hypothesis of an absence of correlation with observed data, (ii) replicate autocorrelated 111 

multivariate patterns with constant correlation among variables, and (iii) replicate autocorrelated 112 

patterns that have a predefined correlation with observed data, as used in simulation studies (e.g., 113 

Beale et al. 2010). The performance of the proposed Moran spectral randomization methods is 114 

assessed with correlation analysis of simulated data for different sampling designs. 115 

Methods 116 

Spectral decomposition of variance and correlation using Moran Eigenvector Maps (MEM)  117 

Spatial component regression (SCR; Wagner 2013) uses MEM to decompose the correlation rxy 118 

between two variables x and y, observed at the same n sampling locations that may be regularly 119 
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or irregularly spaced, by spatial eigenvectors. It defines the correlation rxy as the cross product of 120 

the vectors rxV and ryV that contain the correlation coefficients between x or y and each column in 121 

a matrix V that is defined as a set of orthogonal and uncorrelated (Rodgers, Nicewander & 122 

Toothaker 1984) spatial eigenvectors obtained by MEM. In matrix notation: 123 

rxy = rxV
T ryV , (1) 124 

where T indicates the transpose. The columns in V are the eigenvectors of a symmetric and 125 

doubly centered spatial weight matrix W (Dray, Legendre & Peres-Neto 2006). Matrix W is 126 

constructed by first defining a neighbor matrix of size n ×  n that contains values of one for pairs 127 

of observations i and j if j is considered a neighbor of i, and zero otherwise. Each neighbor j of 128 

observation i is then assigned a spatial weight, which may be binary or e.g. a function of the 129 

inverse geographic distance between i and j, and weights may optionally be row-standardized. 130 

Note that spatial eigenvectors in V are defined as a function of W only, without reference to the 131 

values of variables x or y observed at the sampling locations, and V is thus the same for x and y. 132 

MEM results in a matrix V where the spatial eigenvectors are already sorted from the largest 133 

scale to the finest scale.  134 

A set of n observations with a full-rank spatial weights matrix W of size n ×  n will result 135 

in n – 1 orthogonal and uncorrelated (Griffith 2000) eigenvectors Vk associated with eigenvalues 136 

λk, while a single eigenvector with zero eigenvalue is dropped. Under these conditions, the vector 137 

r2
xV of squared correlations of x with eigenvectors in V forms a power spectrum (i.e., a spectral 138 

decomposition of the variance of the observed data x on the orthonormal basis V): 139 

r2
xV = rxV

T rxV = 1.  (2) 140 
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Note that if W is not of full rank, there will be multiple zero eigenvalues and their 141 

associated eigenvectors may not be uncorrelated. To ensure that eq. 2 holds in this situation, a 142 

vector of ones is added to the subset of eigenvectors with null eigenvalues, the subspace spanned 143 

by these eigenvectors is then re-orthogonalized, the unit eigenvector is removed, and the last 144 

eigenvector in the subset is dropped. This procedure is implemented in the R function 145 

‘scores.listw’ provided in Supporting Material 3.  146 

The variable x can be decomposed on an orthonormal basis V, so that x can be fully 147 

recreated from rxV, V, and its mean x  and standard deviation s(x): 148 

 ( )0.5( ) 1s n= + − xVx x x Vr   (3) 149 

A key feature of MEM is the additive decomposition of Moran’s I (Dray, Legendre & 150 

Peres-Neto 2006; Dray 2011). Eigenvalues λk are conveniently rescaled by multiplication with h 151 

= n / Σijwij, where wij are the elements of W, so that the rescaled eigenvalue mk = hλk corresponds 152 

to Moran’s Ik of eigenvector vk, with k = {1, …, n – 1}. According to Dray (2011), Moran’s Ix of 153 

variable x can then be found by: 154 

Ix = r2
xV

T m,  (4) 155 

which means that global spatial autocorrelation (Ix) of the variable x is the sum of Moran’s 156 

I  of all spatial eigenvectors, weighted by the variance each eigenvector explains in the observed 157 

variable x (i.e., weighted by the power spectrum).  158 

Basic algorithm for Moran spectral randomization (MSR) 159 

The spatial structure of x can be defined by its global level of autocorrelation (Ix = r2
xV

T m, eq. 4) 160 

and its multiscale decomposition defined by its power spectrum (r2
xV, eq. 2). In this context, MSR 161 
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aims to find a vector of coefficients a = a1,,an−1"# $%
T

 so that the random variable xrand = (n – 1)0.5 162 

Va satisfies different conditions. Squared values in a should be a power spectrum so that:  163 

1
2

1
1

n

i
i
a

−

=

=∑  (C1) 164 

To preserve the global level of autocorrelation Ix, the vector a must satisfy equation 4 and 165 

this leads to the second condition: 166 

1 1
2 2

1 1
i

n n

i i i
i i

I a m r m
− −

= =

= =∑ ∑x xv  (C2) 167 

 168 

Lastly, to preserve the multiscale structure, the vector a must satisfy equation 2 and this 169 

leads to the third condition: 170 

2 2
iia r= xv  (C3) 171 

 172 

We provide different algorithms to find adequate values for a satisfying strictly or softly the 173 

different conditions. Condition C1 is strictly preserved in all algorithms.  174 

 175 

The Singleton procedure  176 

Choosing 
iia r= xv  satisfies both conditions C2 and C3. Hence, the solution consists in 177 

randomizing the sign of correlations independently for each single eigenvector (i.e., 
iia r= ± xv ). 178 

This approach allows also generating multivariate replicates with constant correlation among 179 

variables (see below).   180 

 181 
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The Pair procedure  182 

This procedure aims to satisfy strictly condition C2 and softly condition C3. Instead of preserving 183 

the contribution of each single eigenvector in the multiscale decomposition, we consider pairs of 184 

eigenvectors vi and vj. This subset is stored by column in the matrix Vk. In this case, the condition 185 

C3 is partially satisfied by preserving the proportion of variance explained by a pair of 186 

eigenvectors. We obtain the new condition C3’: 187 

2 2 2 2 2
i jk i jR a a r r= + = +

xV xv xv  (C3’) 188 

The condition C3’ corresponds to the equation of a circle of radius 2

k k
R R=
xV xV

. To preserve the 189 

level of autocorrelation for the pair of eigenvectors, the condition C2 becomes:  190 

2 2 2 2
k i ji i j j i jI a m a m r m r m= + = +xV xv xv  (C2’) 191 

The resolution of the system of equations C2’ and C3’ leads exactly to the solution provided by 192 

the singleton procedure. An alternative is to satisfy only the condition C3’ that corresponds to the 193 

equation of a circle. The solutions are obtained by drawing a random angle Φrand from a uniform 194 

distribution between [0 – 2π] and then compute the values 195 

( ) ( ){ }rand randcos ; sin
k ki ja R a R= Φ = Φ

xV xV
. Note that this method does not completely preserve 196 

the global autocorrelation values (condition C2’ and C2). However, it will be considered as a 197 

valuable alternative as it can be easily extended to generate multivariate replicates with constant 198 

correlation among variables or univariate replicates with fixed correlation with observed data (see 199 

below). 200 

 201 

The Triplet procedure  202 
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This procedure aims to satisfy strictly condition C2 and softly condition C3. In this case, the 203 

multiscale decomposition is preserved for triplets of eigenvectors vi, vj and vl stored by column in 204 

matrix Vk. We thus obtain the new condition C3’’: 205 

2 2 2 2 2 2 2
i j lk i j lR a a a r r r= + + = + +

xV xv xv xv  (C3’’) 206 

The condition C3’ corresponds to the equation of a sphere of radius 
k

R
xV

. To preserve the level of 207 

autocorrelation for the triplet of eigenvectors, the condition C2 becomes:  208 

2 2 2 2 2 2
k i j li i j j l l i j lI a m a m a m r m r m r m= + + = + +xV xv xv xv  (C2’’) 209 

To satisfy both conditions C2’’ and C3’’, a first random angle Φrand is drawn from a 210 

uniform distribution between ]0 – 2π[ (bounds excluded to avoid division by zero). Then, a 211 

second angle is computed by 
( )

( ) ( )
2 2

rand

2
rand

/ ( )sin
asin asin

( )sin
k k l i l

rand
j i

I R m m m
Z

m m

⎛ ⎞− − − Φ
⎜ ⎟Θ = =
⎜ ⎟− Φ
⎝ ⎠

xVxV

. 
212 

The solutions are then given by 
213 

( ) ( ) ( ) ( ) ( ){ }rand rand rand rand randcos sin ; sin sin ; cos
k k ki j la R a R a R= ± Θ Φ = ± Θ Φ = ± Φ

xV xV xV .
  214 

 215 

Practical implementation for Pair and Triplet procedures 216 

MSR consists in randomly redistributing the variance of x within blocks of spatial eigenvectors 217 

Vk. The following steps are performed: 218 

1. Divide the n-1 eigenvectors in K sets Vk (k = {1,…,K}) (see below for details). If the 219 

number of eigenvectors is not a multiple of 2 (Pair) or 3 (Triplet), there will be one 220 

incomplete block VK, whose (randomly selected) eigenvectors are treated by the singleton 221 

procedure.  222 
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2. Repeat for each complete subset Vk. 223 

2.1. Determine the pooled variance in x explained by the eigenvectors ( 2

k
R
xV

), the 224 

associated autocorrelation (
k

IxV ) and (for Pair) the observed angle ( ). atan2 ,
j ik r rΦ =x xv xv . 225 

2.2. Sample the angle Φrand. 226 

2.3. For the triplet procedure, compute the second angle ( )rand asin ZΘ = . If the value 227 

of Φrand leads to a value of Z not comprised in [0-1], then step 2.2. is repeated. If this 228 

existing condition is not satisfied after a number of trials (e.g., 100), the Singleton 229 

procedure is used for each eigenvector in the block Vk. 230 

2.4. Determine the coefficients ia , ja  for the Pair procedure, as 231 

( ) ( ){ }rand randcos ; sin
k ki ja R a R= Φ = Φ

xV xV
 , or ia , ja  and la  for the Triplet procedure, as 232 

( ) ( ) ( ) ( ) ( ){ }rand rand rand rand randcos sin ; sin sin ; cos
k k ki j la R a R a R= ± Θ Φ = ± Θ Φ = ± Φ

xV xV xV
 233 

3. Optional: Compute the new random variable ( )0.5rand ( ) 1s n= + − xVx x x Vr . 234 

 235 

Two or more observed variables may be randomized separately by sampling Φrand 236 

independently for each variable and for each subset Vk. This basic procedure will randomize the 237 

correlation between replicates of different variables. 238 

Subsets Vk (step 1) can be defined randomly or by selecting consecutive eigenvectors. As 239 

Triplet preserves values of Moran’s Ix (condition C2’’), both procedures can be used but 240 

empirical experiments showed that the selection of consecutive eigenvectors often produces 241 

undetermined results in step 2.3. (i.e., [ ]0 1Z∉ − ) and thus leads to the use of the singleton 242 
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procedure. Hence, the random assignment of eigenvectors in subsets should be preferred with the 243 

Triplet procedure. Here, we restricted random assignment to triplets with all positive or all 244 

negative eigenvalues. 245 

 Pair procedure does not preserve the global level of autocorrelation (i.e., 
rand

I I≠x x ). As the 246 

spatial eigenvectors in V are automatically sorted by decreasing Moran components, i.e., rescaled 247 

eigenvalues mk, pairs of consecutive eigenvectors will have similar autocorrelation. In this case, 248 

the use of subsets of consecutive eigenvectors should be preferred as it ensures that the 249 

randomized replicate xrand will have very similar spatial structure as the original variable x (i.e., 250 

rand
I I≈x x ). Supporting Material 1, Fig. S1.1 illustrates the effect of shifting variance between 251 

consecutive spatial eigenvectors.  252 

Generating multivariate replicates with constant correlation among variables 253 

To jointly randomize m variables, i.e., a data matrix X with n rows and m columns, while 254 

maintaining their correlations across all spatial scales, Singleton or Pair procedures may be used. 255 

For the Singleton procedure, the sign for correlations with each eigenvector is randomized once 256 

for all m variables, so that their signs either all change or all remain unchanged. For Pair, a single 257 

Φrand is sampled independently for each subset Vk and applied to all m variables. Then, step 2.4 is 258 

performed for each variable x using rand .kΦ +Φx  instead of randΦ : 259 

( ) ( ){ }. rand . randcos ; sin
x xk ki k j ka R a R= Φ +Φ = Φ +Φ
V Vx x . See Supporting Material 2 for a 260 

mathematical proof. 261 
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Generating replicates with fixed correlation with observed data 262 

To obtain a replicate xrand with similar spatial structure as the observed variable x and a 263 

fixed correlation rfix with x, the Pair method should be used with Φ rand = acos(rfix), the same for all 264 

k, and step 2.4 should be performed using Φx.k ±Φrand . The sign needs to be randomized 265 

independently for each subset Vk, i.e., each pair of consecutive spatial eigenvectors. The 266 

effectiveness of this procedure to obtain multiple non-identical replicates is investigated in the 267 

simulation study below. 268 

Illustration with simulated data 269 

All simulations and analyses were performed in R 3.1.1 (R Core Team 2014). The development 270 

version of the ‘adespatial’ package available at https://r-forge.r-project.org/R/?group_id=195 271 

provides general-use functions to implement the proposed Moran spectral randomization 272 

procedures. Supporting Material 3 contains a customized version of these functions that can be 273 

used with the R code in Supporting Material 4 to reproduce the simulation study.  274 

To illustrate the proposed randomization algorithms, we simulated five standardized 275 

variables with different spatial patterns on the same grid with 40 ×  40 cells (Supporting Material 276 

1, Fig. S1.1, top row). X0 served as baseline without spatial pattern and was sampled randomly 277 

from a standard normal distribution using R function ‘rnorm’. X1 and X2 each represent 278 

stationary spatial patterns at small (X1) and large scale (X2). The two variables were generated 279 

with the function ‘RFsimulate’ of the R package ‘RandomFields’ using an isotropic exponential 280 

variogram model with variance = 5 and nugget = 0 for both variables, and with scale = 1 for X1 281 

and scale = 3 for X2. Variable X3, which has a more complex spatial structure, was derived as 282 
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X3 = X0 + X1 + X2 and is thus correlated with these variables. X4 represents the same spatial 283 

pattern as X1 but with an added linear trend along the y-axis, violating the assumption of 284 

stationarity.  285 

The full sample (n = 1600) was subsampled in different ways, resulting in ten different 286 

samples per simulated data set: a full sample (‘Full 1600’); a regular sampling design (‘Regular 287 

400’), obtained by discarding every second row and column of the full sample; and a random 288 

sample of the same size (‘Random 400’). The remaining sampling designs were chosen to 289 

illustrate the effect of stronger irregularity in the spacing of observations, as well as a further 290 

reduction in sample size. The 70 sampling locations of the well-known oribatid mite data set 291 

(Borcard, Legendre & Drapeau 1992; Borcard & Legendre 1994), sampled within an original 292 

extent of 2.5 ×  10 m, were mapped onto a 40 ×  13 grid, resulting in sampling design ‘Orib 70’, 293 

covering one third of the extent of the full sample. The 13 levels of x-coordinates in ‘Orib 70’ 294 

were repeated three times to obtain sample ‘Orib 210’ with n = 210, covering the extent of the 295 

full sample. To further explore the behavior of Moran spectral randomization for small and 296 

highly irregularly-spaced samples, we subsampled ‘Orib 70’ in five different ways to a sample 297 

size of 32 – 35: a random subsample (‘Random 35’); an artificially spaced out sample, deleting 298 

every second level of y coordinates (‘Spaced 32’); a clumped sample, retaining only y-299 

coordinates < 23 (‘Clumped 35’); a long-stretched sample, retaining only x-coordinates < 8 300 

(‘Long 34’); and a bi-modally clustered sample, retaining only y-coordinates that were either < 301 

13 or > 30 (‘Bimodal 34’).  302 

For the ‘Full 1600’ and ‘Regular 400’ sampling designs, we applied queen’s case neighbor 303 

definition, resulting in an average of 5.06 and 4.44 neighbors per sampling location, respectively. 304 
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For all eight irregular sampling designs, we defined neighbors with Gabriel graphs (Supporting 305 

Material, Fig. S1.2), resulting in averages of 3.37 – 4.06 neighbors per sampling location. For all 306 

sampling designs, W was defined using inverse distance weights followed by row-307 

standardization. This means that nearby neighbors receive more weight than more distant ones, 308 

and the weights of all neighbors sum to one for each sampling location. 309 

Evaluation of method performance 310 

Statistical properties of replicates 311 

Replicates of spatially autocorrelated variables should mimic the spatial pattern of the original 312 

data at all spatial scales but be statistically independent of these. When plotted in space, high and 313 

low values should thus show similar spacing but their physical locations should be randomized. 314 

In statistical terms, MSR replicates should have the same overall spatial autocorrelation (Moran’s 315 

I) and the same multi-scale spatial structure (power spectrum) as the original variables but, on 316 

average, be uncorrelated with the original data, with the same distribution of empirical correlation 317 

coefficients as expected from independently simulated data.  318 

To compare these statistical properties between MSR procedures, we simulated a data set 319 

with variables X0 – X4, as defined above, and subsampled it for each of the ten sampling 320 

designs. For each combination of variable and sampling design, we generated 30 replicates each 321 

with the following methods: Singleton, Pair, Triplet, and, for benchmarking, fully independent 322 

replicates generated by simulating 30 additional data sets (‘Null’). We determined for each 323 

combination of simulated variable x, sampling design and procedure: (i) the correlation of 324 

replicates with the original variable (type I error rate of a t-test for the correlation of x with its 325 
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replicates); (ii) the preservation of global autocorrelation Ix and of the power spectrum (mean 326 

correlation between the power spectrum r2
xV of x and the power spectra of its replicates); and (iii) 327 

for the pairs method only, the bias and precision of Moran’s I of replicates compared to Moran’s 328 

I of x. Bias in Moran’s I was independent of the magnitude of Moran’s I (controlling for 329 

sampling design), hence absolute, not relative deviations were assessed. The entire simulation 330 

was repeated 100 times and values averaged across trials.   331 

Spectral randomization tests for correlation 332 

A randomization test for the correlation between two spatial variables sampled from 333 

uncorrelated populations should have a correct type I error rate α, i.e., if α = 0.05, the null 334 

hypothesis of no correlation should be rejected in 5% of independent cases (where the expected 335 

correlation is zero), and high power to detect linear dependence (where the expected correlation 336 

different from zero). To assess the performance of MSR in significance tests of correlation, we 337 

ran 5000 simulations and estimated type I error rates from independent variable pairs, and power 338 

from correlated variable pairs. For each simulation run, we generated two data sets, X01 – X41 339 

and X02 – X42, where each pair of corresponding variables (e.g., X21 and X22) was simulated 340 

independently with the geostatistical parameters defined above and thus had the same expected 341 

spatial autocorrelation structure, though empirical values of Moran’s I may differ. The expected 342 

correlation between any two variables from different data sets was zero (linear independence), 343 

whereas the expected correlation between X3 and X0, X1, or X2, or between X4 and X1, from 344 

the same data set was non-zero (linear dependence). For each sampling design and variable pair, 345 

we tested the correlation with four different methods: correlation t-test (using R function 346 
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‘cor.test’) and three MSR randomization tests with 199 replicates each, using Pair, Triplet 347 

(random triplets), and Singleton procedures.  348 

Spectral randomization with additional constraints  349 

To illustrate the implementation of further constraints, we simulated 100 data sets and created 30 350 

replicates per data set with the following algorithms: joint MSR of all variables X0 – X4 to 351 

maintain their cross-correlations, using Singleton and Pair methods, and MSR with rfix= {0, 0.3, -352 

0.5, 0.7} to obtain replicates that have a fixed correlation with the original variables. We 353 

evaluated the distribution of correlation coefficients between the original variables and their 354 

replicates, and the distribution of correlation coefficients among replicates.   355 

Results 356 

Statistical properties of replicates 357 

For stationary patterns X0 – X3, MSR methods created patterns that were visually comparable to 358 

the original data but differed in the locations of low and high values (Supporting Material 1, Fig. 359 

S1.3). For X4, a non-stationary pattern with linear trend along the y-axis, replicates included a 360 

randomization of the trend angle (Supporting Material 1, Fig. S1.3, bottom). Pairs randomized 361 

trend direction more flexibly than Triplet and Singleton methods (Supporting Material 1, Fig. 362 

S1.4).  363 

MSR replicates of a random normal variable (X0) were uncorrelated on average (mean = 0) 364 

with the original variable, but the distribution of correlations had higher variance than expected 365 

from true random variables (not shown). This is reflected in higher rates of statistically 366 
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significant correlations between each original variable x and its replicates, based on a parametric 367 

t-test for regression coefficients (Fig. 1). On average, correlations with x were highest for the 368 

Singleton method, lower for Triplet, and lowest for Pair. For variable X2 with stationary, large-369 

scale spatial autocorrelation, replicates of all methods showed increased rates of significant 370 

correlations with x, with differences between sampling designs that appear to be related to 371 

differences in average Moran’s I (Supporting Material, Fig. S1.5).  372 

Replicate simulations of the data generating process (‘Null’) showed high variability in 373 

their global Moran’s I (Fig. 2, left: standard deviation rescaled by multiplication with (n - 1)0.5 to 374 

account for sample size) and power spectra (multi-scale spatial structure), as indicated by a low 375 

correlation between the power spectrum of x and those of its replicates (Fig. 2, right). In contrast, 376 

the Singleton method completely preserved both Moran’s I and power spectra. The Triplet 377 

method preserved Moran’s I but resulted in some variation in the power spectrum, and the Pair 378 

method showed variation both in Moran’s I and the power spectrum.   379 

The Pair method does not strictly preserve Moran’s I but its MSR replicates were generally 380 

unbiased for the random normal variable X0 (Supporting Material, Fig. S1.6). For the spatially 381 

autocorrelated variable X2, bias was negligible for large data sets but Moran’s I of replicates 382 

showed a slight negative bias for the small sampling designs.  383 

Spectral randomization tests for correlation 384 

When correlating two random normal variables X01 and X02, or one random normal variable (X0) 385 

and one stationary, spatially autocorrelated variable (X1, X2 or X3), the parametric t-test 386 

produced correct type I error rates. Specifically, the empirical type I error rates fell within the 387 

95% confidence interval for a binomial distribution bin(n, p) with n = 5000 simulated data sets 388 
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and p = α = 0.05 (Fig. 3 A, B). In these situations, all three MSR procedures (especially the 389 

Triplet method) showed slightly deflated type I error rates, making tests more conservative.  390 

When correlating any two spatially autocorrelated variables (X1, X2, X3 or X4), the t-test 391 

showed high inflated type I error rates. MSR methods maintained correct or slightly deflated type 392 

I error rates for correlations among stationary variables (X1, X2 or X3), but showed considerably 393 

deflated error rates for the correlation between X4 and X1, X2 or X3 (Fig. 3 C, D). Error rates 394 

were independent of the observed level of Moran’s I of the randomized variable. When 395 

correlating two non-stationary variables X41 and X42, where both variables included trend along 396 

the y-axis, MSR tests showed generally lower type I error rates than t-tests (Fig. 3 E). Especially 397 

the Singleton and Triplet procedures were less affected by non-stationarity. 398 

When testing the correlation between X01 and X31, where the t-test was applicable (X01 399 

being a random normal), all three MSR methods had slightly lower statistical power to detect 400 

linear dependence than the t-test (Fig. 4). Averaged across the five smallest sampling designs, 401 

Pair reached approximately 98% of the power of the t-test, Triplet 97%, and Singleton 96%. This 402 

order remained constant for all other types of variable pairs with linear dependence, where the t-403 

test was not applicable (results not shown).  404 

Spectral randomization with additional constraints  405 

Correlations between variable pairs with linear dependence (X31 vs. X01, X11, or X21; X41 vs. 406 

X11) calculated using Equation 1 were identical to Pearson correlation coefficients. When 407 

correlated variables were jointly randomized using the Singleton or Pair procedures, their cross-408 

correlations were completely preserved (results not shown).  409 
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 When each variable was randomized with the additional constraint of a fixed correlation 410 

with the original variable, using the Pair method, sampling designs with uneven sample size n 411 

('Random 35', 'Clumped 35') completely preserved the predefined correlation rfix (Supporting 412 

Material, Fig. S1.2 A). For even n, the presence of an incomplete block (where the Singleton 413 

method was used for one randomly selected spatial eigenvector) introduced some variation in the 414 

correlation with the original variable. For large samples (n ≥ 400), this variation was negligible, 415 

but for small samples (n ≤ 100), there was considerable variation as well as a negative bias, so 416 

that on average, correlations with the original variable were slightly weaker than specified by rfix. 417 

For sampling designs with uneven n, the correlation among replicates generated with the 418 

constraint of rfix differed systematically from the correlation among replicates generated without 419 

such a constraint (Supporting Material, Fig. S1.2 B). The mean correlation among replicates was 420 

predictable by r2
fix, whereas the standard deviation varied with rfix and with the level of spatial 421 

autocorrelation. The factor by which the standard deviation of the correlation among replicates 422 

was inflated, compared to replicates without the constraint of rfix, followed 20.5(1 - r2
fix) 423 

(Supporting Material, Fig. S1.2 C).   424 

Discussion 425 

Comparisons of Moran spectral randomization procedures 426 

This paper presents algorithms for restricted randomization of irregularly spaced data with Moran 427 

spectral randomization that can be applied to a wide range of sampling designs for which 428 

restricted randomization methods were limited so far. Moran spectral randomization provides a 429 

framework to build spatially constrained null models allowing statistical inference in the presence 430 
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of spatial autocorrelation. While Moran spectral randomization has been developed here for two-431 

dimensional spatial data, it is also applicable to one-dimensional transect data or time series 432 

analysis. The method produces a technically unlimited number of non-identical replicates even 433 

for small samples (except for the Singleton method with 2(n–1) unique replicates), without 434 

requiring additional parameters beyond the explicit definition of neighbors and spatial weights in 435 

matrix W.  436 

The MSR replicates mimic the spatial characteristics of the original variables in terms of 437 

global autocorrelation and multiscale patterns. These properties allow controlling the type I error 438 

rate of statistical tests (e.g., bivariate correlation) in the presence of autocorrelation. Ideally, 439 

replicates should also be uncorrelated to the original variable to ensure power. These two 440 

objectives (similar spatial structure and independence with the original variables) are antagonist 441 

and thus defined a gradient from considering the original variable (spatial properties fully 442 

preserved but no independence) to its full randomization (complete independence with the 443 

original variable but no spatial constraint). Hence, we provide different procedures that 444 

correspond to different trade-offs between these two extremes.  445 

The Singleton procedure imposes the strongest spatial constraints and thus produces 446 

replicates with the highest degree of correlation with the original variable. It performs 447 

surprisingly well in randomization tests, even for small spatial samples, despite the limitation of 448 

2(n–1) unique replicates. The method is simple to implement and can also be used to jointly 449 

randomize a group of variables. The Singleton method should be preferred when it is important to 450 

strictly preserve the spatial characteristics of the original variables even if this means that its 451 

replicates are more correlated with the original variable.  452 
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The Pair procedure is the least strict concerning the spatial constraints and thus provides 453 

MSR replicates with the lowest degree of correlation with the original variables. Spatial 454 

characteristics are quite well preserved and thus it appears as good compromise and allows for 455 

joint randomization as well as randomization with fixed correlation. The Pair procedure should 456 

be used when it is considered important to randomize correlation at each spatial eigenvector and 457 

reduce overall correlation with the original variable, or when the slightly lower statistical power 458 

or the limited number of 2n-1 unique replicates of the Singleton method are of concern. 459 

Lastly, the Triplet procedure that is supposed to combine the advantages of singleton and 460 

pairs did not perform as well as the other methods and could also be time-consuming (due to the 461 

existing conditions is step 2.3). Hence, it is not generally recommended in future work.  462 

Performance of Moran spectral randomization in correlation analysis 463 

Moran spectral randomization replicates preserved Moran’s I of the original variable either 464 

perfectly (Singleton, Triplet methods) or approximately (Pair). In contrast, replicate simulations 465 

of the generating process (i.e., conditional simulation with known geostatistical parameters) 466 

resulted in considerable variation of Moran’s I among replicates (Fig. 2, left). The marked 467 

quantitative difference illustrates an important conceptual distinction: spectral randomization 468 

methods randomize the observed pattern, whereas conditional simulation simulates independent 469 

outcomes of the underlying process, assuming that it has been correctly parameterized, e.g., 470 

through geostatistical analysis of the empirical data. Preserving Moran’s I may be advantageous 471 

when using replicates to control for the effect of spatial autocorrelation in the empirical data on 472 

statistical inference, such as correlation or regression analysis. Information on the variability of 473 

Moran’s I given a specified model of the generating process will be most important when the 474 
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inference concerns the difference between two or more empirically observed patterns (Fortin et 475 

al. 2003; Remmel & Fortin 2013).  476 

Moran randomization tests produced correct, or slightly deflated, type I errors for 477 

correlation analysis, independent of sample size or sample configuration, unless both variables 478 

exhibited non-stationarity, here in the form of linear trend along the y-axis (variable X4). 479 

Likewise, Fourier spectral randomization is known to be sensitive to trend. Recently, Deblauwe, 480 

Kennel & Couteron (2012) presented a wavelet-based spectral randomization method (dual-tree 481 

complex wavelet transform; DT-CWT) that proved more robust than DFT in correlation 482 

inference. Wavelet analysis has also been used to control spatial autocorrelation in regression 483 

analysis of gridded data (Carl & Kühn 2008), but such wavelet methods are not available for 484 

irregularly spaced data. Non-stationarity, which can occur in many different flavors, remains an 485 

unsolved problem especially in spatial regression analysis (Beale et al. 2010). Further research is 486 

needed to assess the performance of Moran spectral randomization in spatial regression analysis 487 

when stationarity assumptions are met and its sensitivity to various types of non-stationarity.    488 

Flexible algorithms for restricted randomization of irregularly spaced spatial data 489 

The proposed algorithms are applicable to a wide range of research questions and hypotheses. We 490 

presented MSR in the case of spatial autocorrelation but the method can also be used in the case 491 

of temporal of phylogenetic dependence (Peres-Neto 2006). Bivariate correlation analysis can be 492 

achieved by randomizing one variable, or randomizing both variables independently (Lennon 493 

2000). The possibility to jointly randomize several variables while maintaining their cross-494 

correlations will be especially interesting in ecological community analysis that aims at assessing 495 

community interactions. Different groups of species (e.g., functional groups) may thus be 496 
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randomized separately, maintaining empirical species associations within groups but breaking 497 

them between groups. Molecular genetic analysis provides another example where alleles of the 498 

same locus may need to be randomized jointly but independently of other loci. While Moran 499 

spectral randomization can control correlations among jointly randomized variables even for non-500 

normal data including binary variables, the randomized variables may show a different statistical 501 

distribution than the observed variables. Depending on the purpose of randomization, an iterative 502 

approach following the steps in iterative amplitude adjusted Fourier transform may be needed 503 

(Deblauwe, Kennel & Couteron 2012; Schreiber & Schmitz 1996), where the simulated values 504 

are replaced by the observed values according to their rank (though this may alter correlations 505 

between variables). Further research should focus on application of MSR to multivariate 506 

abundance or presence-absence data.  507 

The Pair procedure can be used to generate replicates with similar multi-scale spatial 508 

structure (approximate preservation of Moran's I and power spectrum) and a predefined 509 

correlation rfix with the original variable. This will be useful in simulation studies aimed e.g. at 510 

testing the performance of spatial regression methods in the presence of correlation among 511 

predictor variables (multi-collinearity; Beale et al. 2010; Dormann et al. 2013). In order to 512 

completely maintain rfix, an uneven sample size n should be used, though the variation for even n 513 

will be negligible for larger samples.   514 

Conclusion 515 

Moran spectral randomization allows to efficiently use regularly or irregularly spaced spatial data 516 

for assessing the correlation between two observed variables. It provides null distributions that 517 

explicitly incorporate the observed autocorrelation at all spatial scales without the need for 518 
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geostatistical parameter estimation as required for conditional simulation. Instead, Moran spectral 519 

randomization relies on the definition of spatial relationships in a spatial weights matrix W, and 520 

the implications of the choice of W on correlation and regression analysis with various methods, 521 

including those based on MEM, are not well understood (Stakhovych & Bijmolt 2009).  522 

In the limited scope of simulations presented here, focusing on correlation analysis under 523 

stationary conditions, Moran spectral randomization produced correct or slightly conservative 524 

type I error rates and high statistical power (96% - 98% of the power of a parametric t-test). MSR 525 

thus performed well, even for very small and highly irregularly spaced samples. If the method 526 

can be extended to multiple regression analysis, Moran spectral randomization may provide a 527 

new avenue for the problem of correctly accounting for spatial autocorrelation in species 528 

distribution modeling when the parameters of the underlying spatial ecological process 529 

generating the spatial patterns are unknown (e.g.: Beale et al. 2010; Kühn & Dormann 2012).  530 
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 Figure captions 611 

Figure 1: Type I error rates for a t-test of the correlation between each observed variable and its 612 

replicates, for the random normal variable X0 (top row) and variable X2 with stationary, large-613 

scale spatial autocorrelation. 'Null' refers to fully independent replicates of the generating 614 

process. 615 

Figure 2: Spatial properties of replicates for fully independent replicates of the generating 616 

process ('Null') and for MSR replicates generated with Pair, Triplet or Singleton procedures. Left: 617 

bar chart of the mean standard deviation of Moran’s I of replicates, rescaled by (n – 1)0.5 (to 618 

account for sample size) and pooled across sampling designs, separately for X0 (dark grey bars) 619 

and X2 (light gray bars). Note that Triplet and Singleton methods showed zero variation. Right: 620 

bar chart of the mean correlation between the power spectra of the original variable and its 621 

replicates, pooled across sampling designs, for X0 (dark gray bars) and X2 (light gray bars).  622 

Figure 3: Boxplots of empirical type I error rates across 5000 simulation runs, for different 623 

types of variable pairs and randomization methods, pooled across all 10 sampling designs. Fig. A 624 

shows the correlation between two random normal variables, Fig. B the correlation between a 625 

random variable X0 and a variable with stationary spatial autocorrelation (X1, X2, or X3), Fig. C 626 

the correlation between any two variables with stationary spatial autocorrelation, Fig. D a 627 

correlation between a variable with non-stationary spatial autocorrelation (X4: linear trend along 628 

y-axis) and any variable with stationary spatial autocorrelation, and Fig. E the correlation 629 

between two variables with non-stationary spatial autocorrelation. The number below each 630 

boxplot reports the mean, and gray polygons indicate a 95% confidence interval for the expected 631 

type I error rate.   632 
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Fig. 4: Relative power of MSR randomization tests. Each boxplot shows the distribution of 633 

ten empirical power estimates to detect the correlation between variables X0 and X3, using Pair, 634 

Triplet or Singleton procedures, rescaled by the corresponding empirical power estimate of a 635 

parametric correlation t-test. The ten values for each method were obtained from 5000 simulated 636 

data sets, subsampled with each of the five sampling designs with sample sizes between 32 and 637 

35, randomizing either X0 or X3.  638 
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