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It is often assumed that an animal’s metabolic rate can be estimated through

measuring the whole-organism oxygen consumption rate. However, oxygen

consumption alone is unlikely to be a sufficient marker of energy metabolism

in many situations. This is due to the inherent variability in the link between

oxidation and phosphorylation; that is, the amount of adenosine triphosphate

(ATP) generated per molecule of oxygen consumed by mitochondria (P/O

ratio). In this article, we describe how the P/O ratio can vary within and

among individuals, and in response to a number of environmental parameters,

including diet and temperature. As the P/O ratio affects the efficiency of cellu-

lar energy production, its variability may have significant consequences for

animal performance, such as growth rate and reproductive output. We explore

the adaptive significance of such variability and hypothesize that while a

reduction in the P/O ratio is energetically costly, it may be associated with

advantages in terms of somatic maintenance through reduced production of

reactive oxygen species. Finally, we discuss how considering variation in mito-

chondrial efficiency, together with whole-organism oxygen consumption, can

permit a better understanding of the relationship between energy metabolism

and life history for studies in evolutionary ecology.
1. Introduction
Scientists have long acknowledged the importance of estimating an animal’s

metabolic rate, given its potential impact on the rate of resource uptake from

the environment and allocation of those resources [1–4]. Traditionally, investi-

gators have tended to use whole-animal measures of oxygen consumption as a

proxy for the rate of metabolism [1]. Studies across a broad range of taxa have

shown that intraspecific variation in the rate of oxygen consumption is related

to performance across a diverse range of traits including work output [5,6],

growth rate [7], degree of aggressiveness [8], feeding rate [9], lactation capacity

[10] and lifespan [11–13]. However, the association between oxygen consump-

tion and performance is not straightforward, with studies reporting positive,

negative or no relationship, depending on the species and trait investigated

(reviewed in [14]). While these inconsistent findings are triggering extensive

debates centred on theoretical and methodological issues [11,14–21], what is

often overlooked is that whole-organism oxygen consumption may be only a

partial proxy for energy metabolism.

The main issue here is that oxygen consumption itself, whether measured on a

whole-organism or tissue-specific level, is not a true measure of adenosine triphos-

phate (ATP) production, since the amount of ATP generated per unit of oxygen

consumed can vary significantly [22]. Evidence for this variability has become
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Box 1. Practical aspects of mitochondrial assessment.

Methods for measuring the P/O ratio in isolated mitochondria were developed more than 50 years ago by Chance &

Williams [24]. Protocols have also been developed that allow the use of permeabilized cells [25] or homogenized tissue,

which permit rapid sample preparation and give the highest yield of mitochondrial extraction [26] (but see [27]). These var-

ious in vitro approaches are capable of providing a relevant indication of in vivo mitochondrial functioning [28], and recent

technological developments have made such measurements feasible for a broad taxonomic range of organisms. While

oxygen sensors have existed for decades, only recently has their resolution become sensitive enough to allow measurement

of mitochondrial functioning from small tissue samples (50–100 mg, depending on tissue type and species), and from species

with a low mitochondrial density and activity [29,30].
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much more apparent recently with the dramatic increase in fun-

damental mitochondrial research, primarily in the fields of

biochemistry and biomedicine [22,23]. This research has been

driven, in part, by technological advances and methodological

developments that have enabled determination of mitochon-

drial function with improved resolution, higher sensitivity

and the requirement for less biological material (box 1). It is

now evident that variation in the efficiency with which mito-

chondria produce ATP exists between individuals [5,31,32],

populations [33,34] and environments [35], and even within

the same individual over time [6]. This spatial and temporal

variability in mitochondrial functioning adds an additional

layer of understanding to our studies of metabolism. The exist-

ence of variation in the mitochondrial functioning means that

findings using oxygen consumption as a measure of energy

metabolism, while neither an inaccurate nor an inappropriate

proxy of the rate of aerobic metabolism, requires careful

interpretation with respect to the amount of ATP produced [36].

The goal of this review is to emphasize the importance of

considering mitochondrial function together with the rate of

oxygen consumption when investigating the link between

energy metabolism and animal performance. We will first

discuss potential limitations of employing measures of

whole-animal oxygen consumption by itself to investigate

energy metabolism. Second, we present empirical evidence

that environmental factors can induce variation in mitochon-

drial efficiency and that this natural variation can have

significant consequences for animal performance. We then

consider why natural selection has not actually maximized

mitochondrial efficiency, centring our explanation on another

aspect of mitochondria: the generation of reactive oxygen

species (ROS). Finally, we identify potential research questions

that we feel would benefit from combined measures of mito-

chondrial efficiency and whole-animal oxygen consumption

rates. Currently, there are few examples of the integration of

bioenergetics into the realms of ecology and evolutionary

biology (but see [33–38]). Therefore, the primary aim of this

review is to stimulate researchers to adopt a much broader

bioenergetics perspective, and in so doing produce a more inte-

grative approach to the study of metabolism in the context of

ecology and evolutionary biology.
2. What the rate of oxygen consumption does
and does not tell us

There are a number of different definitions of metabolism [14,20],

but in almost all cases the metabolism is measured by quantifying

the rate of oxygen consumption. However, what assessments of
oxygen consumption are expected to reveal with regard to

energy metabolism is rarely specified. The broad concept of

metabolism includes all anabolic and catabolic reactions within

an organism, and consequently covers all processes associated

with obtaining, assimilating, transforming and allocating resour-

ces. The term ‘oxygen consumption rate’ is usually presumed to

be related to any, if not all, of these processes.

Energy derived from nutrients (carbohydrates, lipids,

proteins) becomes usable only after being transformed into

high-energy phosphate bonds in molecules of ATP. ATP is

the principal energy source for most cellular functions, such

as DNA, RNA and protein synthesis, cell division, signalling

transduction pathways, muscle contractile activities, and

active transport across the cell membrane [39]. The main

sites of energy transformation are the mitochondria, which

provide over 90% of cellular ATP [40]. The majority of ATP

is produced via oxidative phosphorylation, a process through

which substrate molecules are first oxidized by the tricar-

boxylic acid cycle to produce the reducing cofactors NADH

and FADH2. These reducing agents pass electrons through

a set of protein complexes (the electron transport chain—

ETC) situated within the inner mitochondrial membrane

and then to the final acceptor, oxygen. The electron flow

through the ETC allows the proton (Hþ) pumps to expel

Hþ from the matrix to the mitochondrial inter-membrane

space. The accumulation of Hþ within this inter-membrane

space generates an electrical (DCm) and chemical (DpH)

gradient, the electrochemical potential (Dp), that is required

by the protein complex ATP synthase to drive the

phosphorylation of ADP to ATP [41].

Although ATP production depends on the rate of oxi-

dation, the number of ATP molecules produced for each

oxygen atom consumed by the mitochondria (termed the

P/O ratio) can vary [22]. One factor underlying this variation

is that the amount of Hþ pumped into the inter-membrane

space per unit of oxygen consumed by the ETC (the Hþ/O

ratio) is substrate-specific. For example, mitochondria oxidiz-

ing succinate exhibit an Hþ/O ratio of 6, whereas this ratio is

10 when the substrate is pyruvate/malate [22]. Despite well-

established methods to determine which metabolic substrate

is being oxidized (box 2), and direct evidence of variation in

Hþ/O ratio due to substrate type [22,42], most studies of

energy metabolism do not take into account this effect of sub-

strate type on the efficiency of ATP production. A second

potential mechanism altering the P/O ratio is slippage of

the proton pumps. This slippage results in either fewer

protons being pumped into the inter-membrane space per

electron transferred by the ETC, or fewer ATP molecules

produced per proton passing back through ATP synthase



Box 2. Identifying the energy substrate used by the mitochondria.

The nature of the metabolic substrate oxidized by the mitochondria affects not only the P/O ratio but also the ratio of carbon

dioxide produced to oxygen consumed, also called the respiratory quotient (RQ) [39]. An advantage of the RQ is that it can

be measured in vivo; it may be used to infer the relative contributions of carbohydrate and fat as substrates of the aerobic

metabolism, where RQ ¼ 1.0 indicates exclusively carbohydrate and RQ ¼ 0.71 indicates exclusively fat [22,39]. All else

being equal, the difference in P/O ratio between carbohydrate and fat oxidation leads to the calculation that, for a given

oxygen consumption rate, the production of ATP should be 15% lower when oxidizing carbohydrate compared with fat

[42]. Intermediate values are more difficult to interpret since these imply the utilization of combinations of substrates, includ-

ing protein in some cases; the use of protein can be evaluated by measuring rates of nitrogen excretion, so potentially

allowing calculation of the relative use of fat and carbohydrate substrates [39].
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[22,43–45]. However, while such slip reactions can occur

under certain conditions in vitro, their importance under

physiological conditions remains uncertain [22].

A third cause of variation in the P/O ratio, which has

received much more attention (so will be the major focus of

this article), is caused by a dissipation of Dp across the

inner mitochondrial membrane. The dissipation of Dp is

associated with an increase in heat production [46]. Several

distinct biological mechanisms can alter Dp and hence

affect the P/O ratio. The composition of the mitochondrial

inner membrane, both in terms of its phospholipid fatty

acids and the occurrence and activity of mitochondrial carrier

proteins such as uncoupling proteins (UCP) or adenine

nucleotide transporters (ANT), can influence the mitochon-

drial membrane conductance of protons and in turn the Dp

[46–49]. The Dp is also likely to be affected by the active trans-

port of cations (e.g. Ca2þ), anions (e.g. ADP32 and ATP42) and

metabolites (e.g. aspartate and glutamate) across the inner

membrane [45,50]. Variation in P/O ratio has been discussed

mostly in terms of proton leakage across the membrane, prob-

ably because it is the major contributor to the drop of Dp (and

consequent increase in oxygen consumption) that is indepen-

dent of ATP generation [43,51,52]. For instance, the futile

cycle of Hþ pumping and Hþ leakage within rat liver and

muscle mitochondria is estimated to account for approximately

20% of whole-animal oxygen consumption [53]. Thus, a signifi-

cant proportion of the oxygen that an organism, a tissue or a

mitochondrion consumes may not result in ATP production.

The degree of coupling of energy derived from oxidation to

the generation of ATP varies across different tissues, individ-

uals, environment and species, and over the lifetime of an

individual [49,53–56], leading to variation in the efficiency

of ATP production. Whole-organism oxygen consumption

measures only the rate of substrate oxidation, and conse-

quently does not distinguish between the energy used to

produce ATP and energy dissipated through Hþ leakage. Con-

sequently, it cannot be used as an accurate proxy for ATP

production when variation in the P/O ratio occurs. In this

review, we examine this idea and discuss the importance of

variation in P/O ratio in the context of evolutionary ecology.

There has recently been an increase in empirical support for

the concept that variation in the P/O ratio may be in response

to ecological parameters (see §3) and have implications for

animal performance (see §4). Two main approaches for esti-

mating the P/O ratio are used, although other methods exist

[50,57]. The first of these determines the mitochondrial

oxygen consumption associated with the disappearance of a

known amount of ADP (presumed converted to ATP). The

second approach, developed by Lemasters [58], measures
ATP production directly, so allowing calculation of the ATP : O

ratio. These ratios, although not equal in terms of relevance

and applicability, allow useful inferences to be made about

the variation in P/O ratio.
3. Environmental causes of variation in the
P/O ratio

There is clear evidence that environmental conditions can

affect the efficiency of ATP production, potentially contribut-

ing to variability in performance over the lifetime of an

individual. One of the most pervasive factors affecting the

energy metabolism of organisms is the ambient temperature

of the environment. Not surprisingly, the effect of tem-

perature on mitochondria differs between poikilothermic

ectotherms and endotherms. In poikilothermic ectotherms,

increasing ambient temperature directly enhances the rate

of biochemical reactions and thereby stimulates whole-

organism oxygen consumption, but only up to a point

beyond which reactions decrease as a result of damage. How-

ever, ambient temperature can also affect the efficiency of ATP

production, presumably due to an increase in Hþ conductance

of the inner membrane with increasing temperature. This results

in a greater proportion of Hþ being shunted away from ATP

synthase, thereby reducing the P/O ratio [59,60]. Temperature

effects on the P/O ratio may therefore contribute to the non-pro-

portional relationship between ATP production and the rate of

oxygen consumption in poikilothermic ectotherms. The P/O

ratio in endotherms is less directly affected by the ambient ther-

mal regime, except when chronically exposed to cold

temperatures [46,61,62]. In mammalian brown adipose tissue,

prolonged cold exposure induces a severe reduction in mito-

chondrial coupling as a result of activation of uncoupling

protein UCP1, and this mechanism clearly contributes to

thermogenesis [46]. However, while acclimation to cold temp-

eratures increases the rate of oxygen consumption in both

mammals and birds, its effect on the efficiency of energy trans-

duction appears to be taxon-specific: activation of UCPs has no

effect on the coupling of ATP production to oxygen consump-

tion in avian skeletal muscle [61]. The taxon-specific effect of

cold acclimation on mitochondrial efficiency may be due to

differences in the mechanism that is responsible for this acclim-

ation, since, in birds, ANT rather than UCP is believed to be the

principal mitochondrial uncoupler [62].

Food intake can also affect the efficiency of ATP pro-

duction. Individuals with reduced food intake tend to exhibit

an increase in the P/O ratio (e.g. by an average of 15% in fasting

king penguins Aptenodytes patagonicus [35]). This is thought to



Table 1. Examples of the relationship between mitochondrial coupling efficiency (P/O ratio: high values indicate that relatively little oxygen is required to produce
a given amount of ATP) and animal performance indicators such as growth (G), reproduction (R) and somatic maintenance and lifespan (M) among conspecifics.
‘Experimental’ indicates whether the P/O ratio was manipulated (i.e. by use of uncoupling agents), so providing stronger evidence of a causal relationship than a
simple correlation. ‘Assumed’ indicates that P/O was not measured but was assumed to have been decreased by use of an uncoupling agent.

species experimental tissue P/O ratio higher P/O ratio correlated with refs

yeast

(Saccharomyces cerevisiae)

yes assumed M: greater replicative lifespan; higher hydrogen

peroxide production

[67]

fruitfly

(Drosophila melanogaster)

yes assumed M: shorter lifespan; better viability when

deprived of food

[68]

common frog tadpole

(Rana temporaria)

yes whole organism ATP : O G: higher growth rate

M: greater hydrogen peroxide production;

more lipid oxidative damage

[36]

common frog

(Rana temporaria)

no liver ATP : O G: larger adult body size [33]

garter snake

(Thamnophis elegans)

no liver ATP : O G: smaller adult body size

R: smaller neonate birth size; smaller litter size;

earlier sexual maturation

M: longer lifespan; more DNA oxidative damage

(erythrocytes) when exposed to UV; greater

oxidative repair efficiency; higher rate of

trematode infection

[34]

broiler chicken

(Gallus gallus domesticus)

no duodenum ADP : O G: lower weight gain per food ingested

M: less hydrogen peroxide production; less

protein oxidative damage

[69,70]

broiler chicken

(Gallus gallus)

no skeletal muscle ADP : O G: higher growth rate [71]

zebra finch

(Taeniopygia guttata)

yes assumed R: greater egg production

M: higher response to immune challenge

[37]

Swiss mice

(Mus musculus)

yes assumed G: higher weight gain per food ingested; higher

body mass

M: shorter lifespan; more protein and DNA

oxidative damage (brain, liver and heart)

[72]
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be beneficial since an increase in P/O ratio minimizes the cost of

ATP synthesis, thereby reducing energy substrate requirements

[63]. Such plasticity may confer a physiological advantage by

helping animals cope with periodic decreases in food intake

[35]. It should be noted that this change in P/O ratio affects

calculations of the metabolism of food-deprived animals, if

these calculations are based on measures of oxygen consump-

tion. For example, king penguins reduced their rate of oxygen

consumption by 30% when fasting [35,64], but the reduction

in ATP synthesis was much smaller than this would imply

due to the associated 15% increase in P/O ratio [35].

Diet composition can also have an indirect effect on the

P/O ratio (in addition to any direct effect of energy substrate

on the ETC mentioned in §2), since it can affect the phospho-

lipid properties of the inner mitochondrial membrane. For

instance, the mitochondria of mice consuming a diet enriched

in highly unsaturated fatty acids exhibited enhanced per-

meability to protons, greater mitochondrial proton leak and

a decrease in the DCm [65], which would have altered the

P/O ratio [66].
4. Consequences of the P/O ratio for animal
performance

The P/O ratio can affect performance in a range of whole-

organism traits (table 1). One of the most widely documented

effects of the P/O ratio is on the rate of growth. The synthesis

of new tissue is energetically costly, so investment in growth

must depend on the capacity to generate ATP. The remark-

able natural variation between individuals in their growth

efficiency has been found to be related to mitochondrial func-

tioning, largely as a result of research undertaken by animal

production scientists investigating why some individuals

grow faster than others on the same food ration [31]. Studies

designed to explore the physiological basis for differences in

growth efficiency in poultry show that individuals with

higher growth efficiencies exhibit lower UCP expression in

their muscle mitochondria [71,73] and reduced proton leak,

resulting in a higher P/O ratio [71]. A similar relationship

has also been reported in the common frog Rana temporaria,

where individuals from natural populations characterized
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by larger average body size had a higher P/O ratio [33]. Sur-

prisingly, the opposite trend was found in wild populations

of garter snakes Thamnophis elegans [34].

The interpretation of results derived from correlative

approaches is limited since any relationship between the P/O

ratio and performance cannot be presumed causal. Recently,

researchers have sought to manipulate the level of the P/O

ratio in order to more directly test the effects of mitochondrial

efficiency on whole animal traits [36,37,67,68]. An experimen-

tal decrease in the P/O ratio can be induced by chronically

exposing the animal to an uncoupling agent such as 2,4-

dinitrophenol (DNP), which acts, analogous to endogenous

UCPs, to increase the rate of Hþ translocation across the

inner mitochondrial membrane. DNP exposure results in a

decrease in the P/O ratio and a simultaneous increase in

oxygen consumption [36,48,74]. Chronic exposure to DNP

has revealed interesting effects of the P/O ratio on animal per-

formance across a range of taxa (table 1). For example, rats

Rattus norvegicus exposed to DNP had reduced exercise

capacity [75], while mice exhibited a lower growth rate for a

given food intake [72]. Common frogs exposed to DNP

during the tadpole stage had a higher rate of oxygen consump-

tion but grew more slowly than controls; they did not increase

their food consumption and so were unable to compensate for

the energy loss elicited by the decreased efficiency of ATP pro-

duction [36]. However, it should be noted that DNP-treated

zebra finches Taeniopygia guttata compensated for their mito-

chondrial inefficiency by increasing their food intake, and so

maintained a body mass and rate of growth equivalent to

that of controls [37].

Variation in the P/O ratio can also influence reproductive

output. DNP-treated zebra finches laid fewer eggs, despite

having a higher food consumption than controls [37]. By contrast,

the artificial induction of mild uncoupling in yeast Saccharomyces
cerevisiae led to an increased reproductive output, as a result of a

greater replicative lifespan (see the discussion below as to why

lower P/O ratio may increase lifespan [67]). However, there are

presently too few studies to say definitively whether such diver-

gent effects of uncoupling on performance are taxon-specific

responses, or are due to differences in the degree of uncou-

pling, which is not always directly quantified and is rarely

screened within a single study (but see [76]).
5. Why has selection not eradicated inefficient
mitochondria?

Given the pervasive viewpoint that limited resources constrain

individual investment across competing life-history traits [77],

and that this resource limitation should apply as much to ATP

as to the substrates used to produce it, one would expect a

strong evolutionary selection pressure to maximize the P/O

ratio in order to make the greatest use of the resources avail-

able. So why does variation in the P/O ratio persist? Perhaps

the main reason for a submaximal P/O ratio is that ATP pro-

duction must trade off against ROS generation. ROS are

highly reactive molecules that have many beneficial properties,

but also have the potential to induce cellular damage to lipids,

proteins and nucleic acids if they escape neutralization by a

suite of endogenous and exogenous antioxidants [78]. ROS

are an inevitable consequence of the flow of electrons through

the mitochondrial ETC [79], and their rate of generation is posi-

tively related to Dp [23,80]. Therefore, a decrease in DCm as a
result of Hþ leakage, for instance, while reducing the efficiency

of ATP production, also decreases ROS production [23,81].

Experimental increases in Hþ conductance (through DNP)

can simultaneously reduce both the P/O ratio and oxidative

damage [36,72] (but see also [37]). Since oxidative damage

has been proposed as an important factor underlying both cel-

lular and whole-organism senescence [78,82] (but see also [83]),

a reduction in the P/O ratio could potentially be associated

with a slower rate of ageing through its associated reduction

in ROS production (the ‘uncoupling to survive’ hypothesis

[23,84–86]). Lifespan has indeed been shown to be greater in

individuals that have either a naturally lower Dp [13] or a

higher Hþ conductance as a result of exposure to uncoupling

agents [67,68,72]. However, to date there is no direct in vivo evi-

dence to show that a longer lifespan associated with a reduced

P/O ratio is also associated with a reduction in ROS production.

The consequences of the P/O ratio for animal perform-

ance depend crucially on the extent to which changes in

mitochondrial functioning affect the relative production of

ATP versus ROS. Dp is the main mediator between the rate

of respiration, ATP and ROS generation [41,45,80]. In vitro
experiments show that when ATP synthesis is artificially

inhibited, DCm increases (e.g. above 140 mV) and the rate

of mitochondrial respiration drops to a low level; the conse-

quent slowed rate of electron flow leads to the ETC

becoming highly reduced, which promotes ROS production

[45,87]. The low rate of mitochondrial respiration also leads

to a build-up in the partial pressure of oxygen, which also

contributes to an increase in ROS production. Conversely,

an increase in ATP synthesis causes a drop in DCm (e.g.

below 120 mV), thus accelerating the respiration rate and

electron flow through the ETC [45,87]. This results in a

decrease in the reduced state of the ETC and in oxygen partial

pressure, both of which cause ROS production to drop to

levels that are barely detectable [87] (but see also [88]).

Thus, both ROS production and the efficiency of ATP pro-

duction may be decreased by a slight drop in Dp [22,23].

However, the two phenomena occur at different Dp levels,

and therefore the relationship between them is unlikely to be

straightforward. Until recently, these processes could only be

measured in vitro, resulting in an artificial alteration of Dp by

modulating inhibitor and substrate supply. However, recent

technological advances now allow researchers to simul-

taneously measure the rates of oxygen consumption and ATP

production in vivo [28,57,86]. These studies have confirmed

the in vitro finding that an experimental increase in Hþ conduc-

tance results in lower ATP generation [74]. However, the recent

development of more sophisticated and less cytotoxic uncou-

pling agents [89] and chemical probes to assess ROS

generation in vivo [90] should help investigate the relationship

between ATP and ROS generation.
6. Conclusion and directions for future research
We contend that the lack of appreciation for the variability in

mitochondrial efficiency could lead to misleading interpret-

ations of the relationships between oxygen consumption

and animal performance, since the amount of ATP generated

per molecule of oxygen consumed can vary significantly both

among and within individuals. Combining sub-cellular and

whole-organism measurements of metabolism will provide

a more robust framework for understanding organismal
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energy metabolism. For example, a high P/O ratio does not

necessarily result in high ATP production since this ratio

can also be offset by a decrease in oxygen consumption rate

(e.g. [36]); nor is it the case that individuals with a relatively

low P/O ratio are necessarily producing less ATP than those

with a higher P/O ratio, since this will depend on the rate of work

of their mitochondria. Therefore, measuring both levels of ener-

getic processes may give a better insight into the energy

metabolism, since the rate of ATP generation is dependent on

both the rate of oxygen consumption and the efficiency with

which that consumed oxygen is used to make ATP.

The biological relevance of the P/O ratio for animal per-

formance has often been evaluated using only a single tissue

[33–35,37,61]. However, mitochondrial functioning, and in

turn P/O ratio, may differ significantly among tissues in the

same individual [56,91,92], probably due to tissue-specific con-

trol of the mitochondria [93,94]. For example, the effect of

fasting on the P/O ratio of cold-acclimated birds differs

between pectoralis and gastrocnemius muscles [95], and the

loss of mitochondrial efficiency in older humans is more evi-

dent in dorsal interosseous muscle than in tibialis anterior

muscle [86]. Thus, there is a need for studies that assess P/O

ratio across multiple tissues. New approaches, based on

biopsy [35,96] or blood samples [97], now make it possible

for ecologists to conduct longitudinal studies of mitochondrial

function [6], although such an approach may be challenging,

depending on the tissue of interest or the studied animal.

A crucial step in this field will be to assess whether samples

that can be collected without sacrificing animals provide a

representative measure of P/O ratios of different tissues.

Future research based on metabolic indices that integrate

measurements of oxygen consumption rate and mitochondrial

functioning may also aid interpretation of life-history varia-

tion among and within populations. While the concept of

life-history trade-offs has been appreciated by evolutionary

biologists for decades, the mechanisms underlying these

trade-offs are still poorly understood [98]. If maximization of

the P/O ratio is traded off against ROS production, among-

individual differences in mitochondrial bioenergetics may

play an important role in linking variation in resource allo-

cation with oxidative stress, two components of a mechanism

that has been proposed as a physiological basis of life-history

trade-offs [23,99,100]. Ideally, studies of life-history trade-offs

will need to consider and account for not only the rate and effi-

ciency of energy metabolism (i.e. whole-organism oxygen

consumption and mitochondrial efficiency respectively), but

also for the consequent rate of ROS production.
In manysituations, natural selection may favour phenotypes

that have a relatively high efficiency of ATP production (since

this may lead to faster growth, larger body size and/or greater

reproductive output, as shown in table 1), but reducing oxi-

dative stress may become a priority when self-maintenance

takes precedence over growth or current reproductive rate

[34,36,37]. While these two potential evolutionary trends seem

to be mutually exclusive, the balance between maximizing mito-

chondrial energy efficiency versus operating at lowest oxidative

cost may represent a population-, individual- or even stage-of-

life-specific adaptive strategy [23,36,37]. For example, maximi-

zation of the P/O ratio might be expected during periods of

high energy demand, such as during migration [101] or lactation

[102], even if this results in greater ROS production that might, if

uncontrolled, carry a cost that becomes evident later in life [103].

By contrast, in situations where food availability is high relative

to energetic demands, then we might predict a greater prioritiza-

tion of somatic maintenance relative to energy transduction

efficiency, and hence a lower P/O ratio. As an example, this

approach might help explain why individual Djungarian ham-

sters Phodopus sungorus on an ad libitum diet that spent a

greater proportion of days in torpor (when energy demands

are greatly reduced) also had slower rates of cellular senescence

[104]. We might thus expect that this balance between the

benefits of efficient ATP production and reduced ROS pro-

duction may vary seasonally, in line with changing food

availability and time windows for life-history events. The opti-

mal P/O ratio and rate of oxygen consumption are likely to be

shaped by both extrinsic (e.g. food availability, temperature)

and intrinsic factors (such as genotype, substrate mobilization

and hormonal state), but the existence of such a relationship

between P/O ratio, oxygen consumption and life-history strat-

egy still awaits experimental corroboration. Research in these

areas should lead to the accumulation of sufficient information

to allow a comprehensive meta-analysis of how the P/O ratio

is affected by different environmental factors, and in turn how

it influences life-history traits.
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