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Abstract

Background: In randomized clinical trials or observational studies, it is common to collect biomarker values
longitudinally on a cohort of individuals. The investigators may be interested in grouping individuals that share
similar changes of biomarker values and use these groups for diagnosis or therapeutic purposes. However, most
classical model-based classification methods rely mainly on empirical models such as splines or polynomials and
do not reflect the physiological processes.

Methods: A model-based classification method was developed for longitudinal biomarker measurements through a
pharmacokinetic model that describes biomarker changes over time. The method is illustrated using data on human
Chorionic Gonadotrophic Hormone measurements after curettage of hydatidiform moles.

Results: The resulting classification was linked to the evolution toward gestational trophoblastic neoplasia and may be
used as a tool for early diagnosis. The diagnostic accuracy of the pharmacokinetic model was more reproducible than
the one of a purely mathematical model that did not take into account the biological processes.

Conclusion: The use of pharmacokinetic models in model-based classification approaches can lead to clinically useful
classifications.

Keywords: Early diagnosis, Model-based classification, CEM algorithm, Compartment model, Longitudinal study

Background
An increasing number of studies in clinical research and
epidemiology are collecting repeated biomarker measure-
ments during follow-ups of subjects with various conditions
or diseases. These longitudinal measurements, referred to
as trajectories, are often used for patient monitoring. Some-
times, changes in biomarker values over time may also have
a diagnostic or prognostic value. One example is the moni-
toring of Prostate Specific Antigen (PSA) to diagnose re-
lapse of prostate cancer [1]. Another example is the
monitoring of creatinine phosphokinase to check the con-
dition of kidney-transplant patients [2]. Frequently, estab-
lishing a diagnosis with these repeated measurements uses

a threshold value or comparisons between successive values
(e.g., three successive increases or decreases). However, due
to biological variability, a single biomarker value, or even a
small number of successive values, may not be sufficiently
reliable to establish a diagnosis. The whole trajectory may
contain more information regarding diagnosis than a lim-
ited section of this trajectory. Moreover, the trajectory mod-
eling process removes irrelevant fluctuations and may
provide reliable information for diagnosis [1].
The adequate modeling of longitudinal data in a group

of individuals varies according to the type of heterogeneity
considered and the goal of the study. Mixed-effect models
assume that individual trajectories are distributed around
a single mean trajectory and that variability between indi-
viduals is normally distributed. However, summing up a
sample of trajectories into a single one is not appropriate
when there are really different patterns of trajectories; i.e.,
trajectories of various levels or shapes. In this case, the
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variability between individuals is not normally distributed.
The use of classification models allows identifying G dif-
ferent typical trajectories and classifying the subjects ac-
cording to these typical latent trajectories. Each typical
trajectory being associated with a single group, it is hoped
that these groups are linked, for example, to the diagnosis
or the prognosis of the disease of interest.
The classical unsupervised classification approaches

search for a partition of the trajectories that maximizes a
geometric inertia criterion based on a given distance
metric; they require, among other conditions, that mea-
surements be taken on a regular basis, which is not always
possible. The use of model-based classification methods
overcomes this difficulty [3]: the data are viewed as stem-
ming from a model that is parametric over time and
whose parameter values vary from one group to another.
The observed individual trajectories are thus analyzed by
fitting a model and then classifying the trajectories into
the most compatible, though latent, groups identified by
the model. The estimation of the model parameters and
the classification of the trajectories are performed jointly.
To define the typical group trajectories, model-based

clustering relies often on non-parametric methods over
time [4], splines, polynomials, or wavelet-based functions
[5]. These methods are essentially descriptive and do not
reflect the underlying biological mechanisms whereas
the progression toward a disease is often linked to dis-
turbances of a biological system. Herein, these methods
are called non-biological methods. One alternative to
these non-biological models could be the compartment
models commonly used in pharmacokinetics or pharma-
codynamics [6]; they constitute a compromise between a
true biological model and a purely descriptive model,
and are called herein “biological” compartment models.
Compartment models tell the changes in biomarker
quantities in different theoretical compartments of the
body from entry to elimination through hepatic and/or
renal pathways. The exchanges between compartments
may be modeled by differential equations. These equa-
tions are parameterized by a set of kinetic parameters
and transfer constants, which may be interpreted in bio-
logical and physiological terms. As these models reflect
the functioning of biological mechanisms, it is likely that
the classification obtained will be more linked to diagno-
sis or prognosis than a classification obtained by a non-
biological modeling.
The aim of the present article is the presentation of a

method developed to classify and model individual trajec-
tories by integrating knowledge about physiology –through
biological compartment models– in order to find groups
that make biological sense. The illustrative example deals
with measurements of human Chorionic Gonadotrophic
hormone (hCG) in women having undergone curettage or
suction to evacuate a hydatidiform mole, a benign placental

tumor developed during pregnancy. These hCG measure-
ments are used for early detection of women who are most
likely to develop gestational trophoblastic neoplasia (GTN)
[7]. A compartment classification model of hCG trajectories
is proposed. The resulting classification is eventually com-
pared with the current reference diagnostic criteria.

Methods
A semi-mechanistic model for hCG data
The data about hCG after curettage
The present study involved women registered to the French
Trophoblastic Disease Reference Center (TDRC, Lyon,
France) from January 1st, 2010 to December 31st, 2012,
and who underwent curettage for hydatidiform mole [8].
After curettage, the women should be followed-up with
weekly measurements of total hCG until undetectable
levels, then during 2 or 3 weeks for partial moles, or
monthly during 6 months for complete moles. Curettage is
usually followed by a spontaneous total evacuation of the
mole in the best-case scenario. However, up to 25 % of
women keep persistent molar residuals after curettage [9],
which may lead to GTN, and to trophoblastic gestational
tumor in 15 % of cases.
The data come from a French registry. According to

the current French law, an observational study that does
not change routine management of patients does not
need to be declared or submitted to the opinion of a re-
search ethics board (Loi Huriet-Sérusclat 88–1138, 20
December 1988). However, informed consent was
obtained from all participating subjects.
For the present analysis, the objective being an early diag-

nosis of GTN, the time-interval after curettage was
restricted to 21 days. We kept for analysis only data on
women who had at least two hCG measurements and who
underwent no other curettage during these 21 days. Among
the 1053 women thus kept, 155 (14.7 %) were diagnosed
with GTN after 21 days according to the Federation of
Gynecology and Obstetrics (FIGO) criteria considered here
as a gold standard [10]; these women are qualified as
diseased thereafter and opposed to the other non-diseased
women.
After curettage, there is usually an exponential two-

phase decline of hCG, possibly followed by an increase
in the diseased group (Fig. 1). Initial hCG level differ-
ences between women may depend on the initial size
and vascularization of the mole, on some women charac-
teristics [7], and even on measurement errors.

The biological compartment model
After curettage, it is assumed that hCG hormone diffuses
into the blood stream (the plasma compartment or Com-
partment 1) as a bolus, then hCG passes from plasma to
tissues (Compartment 2). During this early fast phase, hCG
plasma concentration declines until equilibrium is reached.
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This mutual exchange between plasma and tissues may be
represented by transfer constants k12 and k21 (Fig. 2). Dur-
ing a second slower phase of elimination, hCG is filtered by
the kidneys and captured by the liver, which are in equilib-
rium with plasma [11]. This elimination may be repre-
sented by an elimination constant k10. The above-
mentioned bi-exponential decrease is consistent with a
two-compartment model.
Moreover, there could be a residual hCG production

(e.g., in case of GTN). Two hypotheses were made regard-
ing this residual production: a constant hCG production
over time, expressed as r(t) =A, or an increasing production
over time due to the GTN growth, expressed as r(t) =A× t.
The biological compartment model shown in Fig. 2

can be converted into a system of ordinary differential
equations (ODE):

dμ1 tð Þ
dt

¼ − k12 þ k10ð Þμ1 tð Þ þ k21μ2 tð Þ þ r tð Þ

dμ2 tð Þ
dt

¼ k12μ1 tð Þ−k21μ2 tð Þ

8>>>><
>>>>:

ð1Þ

where μ1(t) and μ2(t) are the hCG concentrations at time t
in plasma and tissues, respectively. We define C = [A, k12,
k21, k10, μ10] as the set of parameters that characterizes the

model and where μ10 = μ1(0) corresponds to the initial
hCG plasma concentration. The initial concentration in
the tissues was constrained to be zero, first because it
was not observed, then to limit the number of parame-
ters to estimate. All parameter values were constrained
to be positive.
To assess the advantage of a biological compartment

model, we tested a non-biological model. The hCG plasma
concentration was modeled by a simple bi-exponential
equation; thus, without taking into account the bio-
logical hypotheses:

μ1 tð Þ ¼ c exp a� tð Þ þ c2 exp a2 � tð Þ ð2Þ

We define C' = [c, a, c2, a2] as the set of parameters that
characterizes Eq. 2. This bi-exponential model has been
already used to model hCG values in women with low risks
of gestational trophoblastic neoplasia treated with metho-
trexate [12]. It is also a common model for biomarkers in
oncology; for example, for modeling the changes in prostate
specific antigen after prostate cancer treatment [13, 14].
This model is more flexible than linear segments models
that are also frequently used in oncology [15]. Other more
sophisticated models could have been designed (e.g., tri-
exponential models) but we focused on models with rea-
sonable numbers of parameters because of the small
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Fig. 1 Trajectories of log-hCG values in diseased (left) and non-diseased (right) women after hydatidiform mole curettage
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Fig. 2 The two-compartment model for log-hCG values
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number of measurements per subject (median of 3, min-
max: 2–6).
The constraints put on the group-dependent parameters

of the biological compartment model could not be put on
the parameters of the non-biological model. In fact, in the
biological model, the parameters can be grouped into pa-
rameters that reflect the normal functioning of the organ-
ism (k12, k21, k10) and do not change between groups and
parameters that can be impacted by GTN (A, μ10) and that
may change between groups. In the non-biological model,
a residual hCG production due to GTN can impact both
slope parameters (a and a2). Moreover, because the inter-
cepts are correlated with the slopes, the residual hCG pro-
duction can also impact c and c2 parameters. Hence, there
is no reason for these parameters to be identical in the
four groups. This is why no constraints were put on the
group-dependent parameters of the non-biological model.

The measurement error model
After modeling the changes in biomarker concentration
through fitting a biological compartment model, the jth

measurement of individual i at time tij (that is, Yij) was
linked to its predicted value μ1(tij) at time tij by including
a Gaussian measurement error with variance σ2 . To ob-
tain normally distributed residuals per group, we per-
formed a log-transformation of hCG concentrations.

The model-based classification
Biological compartment model for G groups
It was assumed that there are G different groups of indi-
viduals, each group having its own set of kinetic parame-
ters indexed by the number of the group (Cg for the gth

group). The clinical knowledge allowed fixing constraints
to the parameters of the G groups. The possible develop-
ment of a GTN, source of residual hCG production, was
supposed not to interfere with the normal exchanges be-
tween compartments; hence, transfer constants k12 and k21
and the elimination constant k10 were forced to be equal
in all G groups. The aim being distinguishing women with
and without GTN, it was assumed that hCG reflects the
presence of GTN only via the production term A. A was
constrained to be zero in the group with the lowest levels
of hCG (assuming no GTN in this group) and left free to
vary in the other groups. The initial concentration μ10 was
also considered group-dependent.

In the non-biological model, the vectors of parameters
C'g were left without constraints between the G groups.
Two different kinds of models were tested: models with

a constant residual variance (σ2) and models with a re-
sidual variance for each G group (σg

2). Herein, αg = [Cg, σ
2
g]

denotes the parameters that characterizes the typical tra-
jectory and the residual variance of the gth group.

Classification algorithm
In classification modeling, the inter-individual variability
is taken into consideration through identifying groups of
women with similar trajectories as described by G sets of
parameters αg. Let zi = (zi1, …, zig, …, ziG) where zig = 1
when individual i is assigned to group g, otherwise = 0. In
a classification maximum likelihood approach (CML) [16],
the aim is to estimate zi and αg by maximizing ℓc, the aug-
mented log-likelihood of the observations, also called clas-
sification log-likelihood:

ℓcðY;α;π; zÞ ¼
XN
i¼1

XG
g¼1

zig log
�
πg f gðYi;αgÞ

�
ð3Þ

where Yi is the vector of measurements of individual i, πg
the prior probability that any individual belongs to the gth

group –constrained by
XG
g¼1

πg ¼ 1 – and fg the density

function of Yi in the gth group governed by the set of
parameters αg. Here, according to the proposed measure-
ment error model, fg is a multivariate Gaussian distribu-
tion with a diagonal variance-covariance matrix. This
makes the implicit assumption that, conditionally to the
group membership, all the residuals of a single individual
are independent. Maximizing this function according to z,
α, and π is very difficult. However, as proposed by Celeux
and Govaert [17], an iterative algorithm called Classification
Expectation Maximization (CEM) algorithm can be used.
This algorithm is close to the Expectation Maximization
(EM) algorithm [18]. The parameter values are first initial-
ized. Then, the algorithm alternates between three steps.
First, the posterior probabilities for a trajectory to belong to
the different groups –given the parameter values that define
the groups– are calculated using Bayes Theorem (E-step).
Each individual trajectory is then classified into the group
for which it has the maximum posterior probability; this
leads to the determination of the values of z (C-step).
Then, parameters αg and πg of the groups are estimated
by maximum likelihood according to the just estimated z
values (M-step).
For the first iteration, it is also possible to provide an

initial classification of individuals instead of parameter
values. In this case, the algorithm begins with M-step.
The three steps (estimation, classification, and maxi-

mization) are repeated until a stopping criterion is satisfied.
This criterion was a relative difference in ℓc between two
successive iterations lower or equal to 10−6 [19].
There is though no guarantee that the CEM algorithm

can reach the global maximum of the classification likeli-
hood function because this depends on the initial values
[17]. To help the CEM algorithm find the global max-
imum, it was initialized using the results from a stochastic
version (called the Stochastic Expectation Maximization
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or SEM algorithm) run over 100 iterations [20]. The SEM
algorithm differs from the CEM algorithm only by the fact
that, during the C-step, the individual trajectories are not
classified into groups that correspond to the maximum
posterior probabilities but classified randomly according
to the posterior probabilities of membership; i.e., accord-
ing to a multinomial trial. The initialization of the CEM al-
gorithm is thus provided with the best parameter estimates
that correspond to the maximal value of ℓc over the 100 it-
erations of the SEM algorithm. The use of SEM and CEM
algorithms successively was shown to avoid sub-optimal
solutions [17]; this is because the random part of the SEM
algorithm avoids being trapped in a local maximum.
The sensitivity of the results to the initial conditions

as provided by the SEM was then tested through differ-
ent initial allocations of individuals at the first iteration
with the CEM algorithm. The classification obtained
after changing the initial allocations of 10 individuals per
group was compared with the original classification.

Adaptation of CEM algorithm to a system of ODE
Maximizing the classification log-likelihood requires the
values of the predicted concentrations of the biomarker
for any individual given Cg. However, Eq. 1 is not a
closed-form function of time; thus, obtaining μ1g(t) given
Cg requires the solution of a system of ODE. For some
simple systems of ODE, there are analytical solutions for
each compartment, but this was not the case of the sys-
tem analyzed here. Hence, numerical approximated solu-
tions of the system of ODE were required.
Function lsoda of the deSolve package under R soft-

ware [21] was used herein. It selects the appropriate
multistep method of solving (Adam’s methods or back-
ward differentiation formulas) and its order n depending
on the nature of the problem (stiff or not) [22]. The ab-
solute error tolerance for the approximated solutions
was set to 10−6. During each iteration of the CEM algo-
rithm, the solving of the system of ODE is necessary for
both estimation and maximization steps.

The M-step involves non-linear regression through
the maximization of the classification log-likelihood
(Eq. 3). This was done with a Gauss-Newton algorithm
that updates iteratively the parameter values without
requiring the computation of the second derivatives of
the parameters [23]. Optimization during the M-step
was performed by function nls [24] in R software that
allows also constrained optimization. Threshold 10−6

was used as convergence criterion for the Gauss-
Newton algorithm.
Simulations were performed to test the validity of the

proposed method in estimating the parameters of a sys-
tem of ODE in a classification context. The simulation de-
sign and the results are presented in the Additional file 1.

Choice and validation of the classification model
Classification models require the choice of: i) a suitable
model which best describes the biological phenomenon
of interest through measurements; and, ii) a number of
groups G.
Selecting the model and the number of groups was per-

formed on a body of criteria. The total number of groups
was fixed from two to four. Indeed, for a diagnostic pur-
pose, at least two groups are necessary; however, more
groups were considered to allow for heterogeneity between
women. Classical statistical criteria were considered to se-
lect the models: the log-likelihood and the penalized log-
likelihood; namely, the Bayesian information criteria (BIC),
the Akaike information criterion (AIC), and the integrated
classification likelihood (ICL) [25]. The fitting of the
models was also checked graphically. The obtained classifi-
cation was compared with the true status regarding GTN
as per the FIGO criteria. In case of more than two groups,
the group with the highest trajectory level was considered
as predictive of GTN and the other groups were consid-
ered as predictive of absence of GTN. The diagnostic
accuracy features (sensitivity, specificity, positive and nega-
tive predictive values –PPV and NPV–, percentage of well-
classified individuals) were calculated and also used for the
choice of the model and the number of groups. A four-
fold cross-validation [26] was performed on the retained
models to reduce the optimism in the estimation of these
features of diagnostic accuracy. The cross-validation was
stratified on the true status of the women.
In our application, various models were considered ac-

cording to the number of groups, the residual hCG pro-
duction hypotheses (constant or increasing over time),
and the variance of the residuals (constant or different
in each group).

Results
Table 1 shows the statistical performance criteria and the
diagnostic accuracy features of the models tested after
initialization through SEM. The log-likelihood, the penal-
ized log-likelihood criteria (BIC, AIC, and ICL), and the
global percentage of correctly classified women improved
along with the number of groups whatever the constraint
on the residual variance. This confirmed the presence of
heterogeneity between women with residual hCG produc-
tion after curettage. Hence, models with four groups were
preferred. Models with a constant residual variance be-
tween groups tended to give higher PPVs than models with
different residual variances; however, the former tended to
give smaller NPVs. Models with constant residual variance
provided also better specificities than models with varying
residual variance because they classified fewer women in
the upper group of hCG level, which was considered pre-
dictive of GTN. Regarding parsimony, the models that
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considered different residual variances between groups did
not improve the classification.
For early detection of GTN, the best compromise be-

tween model fit and good features of diagnostic accuracy
was reached with two models both with four groups
(summarizing distinct patterns of hCG concentration
changes) and a constant variance (yielding the highest
PPVs) but one with a constant and the other with an in-
creasing residual hCG production over time.
Figure 3 shows the per-group typical trajectories with

each of these models. The typical trajectory of the upper
group is characterized either by an unchanged (Fig. 3, left)
or an increasing (Fig. 3, right) hCG level after an initial ex-
ponential decrease. In both models, there were high NPVs
(89.8 and 90.7 %) indicating that the physician may be
nearly sure of the absence of GTN when a women is

classified into one of the three lower groups. The PPVs of
the highest group were respectively 65.9 and 59.7 % which
indicates that the model with a constant (vs. increasing)
residual hCG production would give more reliable positive
tests. However, the latter model had a higher sensitivity
(43.9 vs. 36.1 %).
We then tested the sensitivity of the classification to the

initial conditions of the CEM algorithm by changing three
times the initial classification with both selected models.
With both models, the sensitivity analysis did not con-
verge exactly to the same solution; however, only three
women at the most changed groups without noticeable
changes in the log-likelihood values.
The diagnostic accuracy features of both models were

re-estimated by a 4-fold cross-validation. The median re-
sults over the four validations are shown in Table 2. The
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Fig. 3 Observed measurements and typical trajectories with the two biological compartment models. Detailed-legend: The solid lines represent
the typical trajectories. The left panel corresponds to the model with increasing residual hCG production and the right panel to the model with
constant residual hCG production

Table 1 Statistical criteria and diagnostic accuracy of the fitted models

Variancea G Modelb Log-
likelihood

BIC AIC ICL Sensitivity (%) Specificity (%) PPV (%) NPV (%) Classification
rate (%)c

Group sizesd

σ2 4 A −4861 9836 9751 9656 36.1 96.8 65.9 89.8 87.8 110-460-398-85

σ2 4 A × t −4932 9997 9892 9794 43.9 94.9 59.7 90.7 87.4 112-439-388-114

σ2 3 A −5105 10300 10233 10174 55.5 91.3 52.4 92.2 86.0 256-633-164

σ2 3 A × t −5117 10324 10257 10196 56.8 90.3 50.3 92.4 85.4 245-633-175

σ2 2 A −5517 11098 11050 11026 76.8 73.7 33.5 94.8 74.2 698-355

σ2 2 A × t −5509 11084 11035 11011 74.2 77.7 36.5 94.6 77.2 738-315

σg2 4 A −4552 9241 9138 8886 65.2 86.5 45.5 93.5 83.4 153-324-354-222

σg2 4 A × t −4699 9535 9432 9236 61.3 79.0 33.5 92.2 76.4 329-379-61-329

σg2 3 A −4924 9954 9875 9749 74.2 79.1 38.0 94.7 78.3 292-459-303

σg2 3 A × t −4923 9951 9872 9748 71.6 80.4 38.7 94.3 79.1 298-468-287

σg2 2 A −5519 11110 11055 11032 82.6 64.7 28.8 95.6 67.3 608-445

σg
2 2 A × t −5511 11095 11040 11020 76.8 73.9 33.7 94.9 74.4 700-353

σ2 4 Non-biological −4830 9823 9701 9632 41.9 95.9 63.7 90.5 87.9 111-445-395-102
aσ for models with constant residual variances and σg for models with different residual variance between groups.bType of residual hCG production: constant
(r(t) = A), proportional to time (r(t) = A × t), and non-biological model. cPercentage of well-classified subjects. dNumber of subjects per group from the lowest
to the highest hCG trajectory group
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cross-validated diagnostic accuracy features were close
to the original ones. Hence, there was little or no opti-
mism in the estimation of the diagnostic performances.
We also evaluated the non-biological bi-exponential

model (Eq. 2) assuming four groups. The diagnostic ac-
curacy features were similar between each of the two
biological compartment models and the non-biological
model. The statistical criteria BIC and ICL were even
better with the non-biological model. However, consid-
ering the results of the 4-fold cross validation shown in
Table 2, it appeared that the non-biological model was
worse in terms of sensitivity; there was an absolute loss
of more than 19 % sensitivity with regard to the model
with an increasing residual hCG production. This means
a loss of ability to detect diseased women. The absolute
difference by more than 25 % PPV between the non-
biological model and the model with a constant residual
hCG production indicated that using the PPVs relative
to the non-biological model would increase the probabil-
ity of wrong treatments.
Finally, the results of the simulations performed to test

the validity of the proposed method in estimating the pa-
rameters are given in the Additional file 1. The global clas-
sification error rate was generally acceptable (close to 7 %
for a realistic residual variance) and increased with the in-
crease of the residual variance and the decrease of the
sample size. The relative bias was generally acceptable
(lower than 5 %).

Discussion
In the present study, a model-based classification was
performed with the CEM algorithm to identify typical
trajectories associated with groups of individuals and as-
sign each individual to one of these groups. Our method
is applicable in presence or absence of explicit solution
for the system of ordinary differential equations used to
describe the trajectories. The small simulation study
showed that the algorithm proposed for data classifica-
tion and parameter estimation seems valid.
To our knowledge, this is one of the first applications of

a model-based classification inspired by a biological
model. Unlike a purely non-biological model, such as the
bi-exponential model used here, a biological compartment
model reflects biological facts. Indeed, in the present

application, the non-biological model had the best BIC
and ICL values; however, according to the cross-validation
results, this model was not as satisfactory as the biological
model in predicting the disease in new subjects. Contrarily
to the biological compartment model, the non-biological
model did not take into account the biological processes
that underlie the changes in hCG level, which may explain
the poor reproducibility of the features of its diagnostic
accuracy. Moreover, the non-biological model might over-
fit the data due to the higher number of parameters com-
pared to the biological model (20 vs. 17); this induces
optimism and poor reproducibility [27]. The constraints
put on the group-dependent parameters of the biological
compartment model might have improved the diagnostic
ability of the classification; in the non-biological model,
such constraints were not introduced because they were
difficult to determine and justify; indeed, in this model,
the parameters have no biological meaning.
Considering trajectory heterogeneity between individuals

has been already proposed through the use of a non-linear
mixed-effects modeling, which is common in pharmaco-
kinetics or pharmacodynamics [28], though mixed models
do not lead to a classification of trajectories. Taking into
account the natural heterogeneity may be also achieved
through another approach with a finite mixture model,
often called growth mixture model [29–31]. This approach
assumes that each individual trajectory is a mixture of G
typical trajectories with weights that vary from one individ-
ual trajectory to another. However, these typical trajectories
may not be clinically relevant; they are only statistical con-
structs that achieve a close modeling of the data. Besides,
mixture models do not assign each individual trajectory to
a given group during the process of parameter estimation:
each individual trajectory has only a probability (or degree
of membership) of belonging to a typical trajectory. Hence,
it is not always possible to give a clinical meaning to a typ-
ical trajectory when it does not represent a set of individual
trajectories. For diagnostic purposes, the aim is to classify
the individual trajectories into a limited number of groups;
thus, an alternative to mixture models is necessary.
In the method proposed here, the predicted trajectory

for a given individual is the typical trajectory of the
group to which this individual belongs. However, even
within a group, an individual trajectory may deviate from
the typical trajectory. This may be taken into account by
adding a random effect within each group, combining
thus a categorical variable (i.e., label g of the group) with
intra-group heterogeneity. Within the context of mixture
modeling, this approach would be similar to the one
proposed by Muthén and Shedden [32] and would take
into account the correlation between the observations of
each individual. For the time being, these observations
are considered independent given the group. Adding the
random effect can be implemented with Monolix, the

Table 2 Median values of the cross-validated diagnostic accuracy
features

Modela Sensitivity Specificity PPV NPV Classification
rate (%)(%) (%) (%) (%)

A 34.9 97.1 67.0 89.6 87.9

A × t 44.6 94.8 59.4 90.8 87.4

Non-biological 24.6 93.8 41.6 87.9 83.6
aType of residual hCG production: constant (r(t) = A), proportional to time
(r(t) = A × t), or non-biological model
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standard software for mixed-effect modeling in a popu-
lation context that uses a stochastic approximation of
EM (SAEM) algorithm to simulate the unobserved indi-
vidual parameters [33]. The implementation of this ap-
proach needs further investigations.
Here, we have chosen for the data a Gaussian distribu-

tion per group, though various other distributions could
have been used. More research is needed to work with
more flexible distributions according to the assumption
on the distribution of the residuals [34].
CART or random forest methods could be alternatives

to the proposed classification method. For example, the re-
gression trees approach has been extended to longitudinal
data [35]. However, some of the implementation of these
methods require the same number of measurements per
subject and this was not the case in our example. More-
over, these methods require to partition the time of follow-
up. In the case of a marker with very quick changes, like
hCG, the results might be sensitive to this partition. This
is why we used an approach with a parametric modeling
of marker changes over time.
The present work used only the log-likelihood, BIC,

AIC, and ICL as statistical criteria for setting the num-
ber of groups. Various other statistical criteria have been
proposed for this purpose [36]. Some of them have been
compared in previous publications [37, 38] but there is
no general consensus on the best criterion. Here, the use
of different statistical criteria led to the same model.
One general consensus is, however, that the number of
groups should not be chosen only on the basis of statis-
tical criteria but also on the notion of clinical relevance
[39]. Some articles or books give application guidance
on choosing the number of groups [36, 40, 41]. Here,
the number of groups was chosen not only on statistical
criteria but also on the diagnostic accuracy features of
the models, and on the relevance of the model regarding
the number of subjects per group.
In the present study, the maximum number of groups

was fixed to four. In fact, a model with constant hCG pro-
duction over time involving five groups led to a lower BIC
than the model with four groups (9413 vs. 9836) but in-
cluded a group with only 24 subjects (data not shown).
With such a small group, the model was unstable and the
results would have lacked reproducibility when tested by
cross-validation. Regarding the computation time, more
than 18 and 24 h were required for the two selected
models r(t) = A and r(t) = A × t, respectively (including the
SEM initialization pre-step) on an Intel Core i5. With these
models, more than 95 and 98 % of the computation time
was spent on the SEM step that searched for the optimal
initial parameter values. It is especially necessary to pre-
vent, as much as possible, the CEM algorithm from finding
local optimum estimates because the log-likelihood has a
complex expression with multiple optima. Reducing the

number of SEM repetitions might not be conceivable;
instead, another optimization algorithm may be used to
increase the speed of convergence; e.g., the Levenberg-
Marquardt algorithm [42] which differs from the Gauss-
Newton algorithm only by the descent direction.
Regarding early detection of GTN, depending on the

chosen model, the women in the highest group had 59.7
or 65.9 % probability of developing GTN. This group
identified 34.9 or 44.6 % of the diseased subjects as per
FIGO criteria. These percentages are obviously too low;
however, in this group, the model-based classification up
to day 21 would diagnoses GTN at a median of 18 days
with the constant residual hCG production model and a
median of 20 days with the varying residual hCG pro-
duction model before the diagnosis on the current FIGO
criteria.
The attainment of relatively high NPVs (close to 90 %)

suggested the two selected models might help identifying
women who do not require aggressive or toxic therapies,
which is an important clinical benefit.
In fine, choosing between the two selected models (con-

stant or increasing residual hCG production over time)
should not be solely based on statistical criteria but con-
sider also the whole clinical context. This goes however
beyond the scope of the present article.
A three-level GTN risk classification may be also con-

sidered: i) women in the lower group (Fig. 3) with a low
GTN risk whose follow-up may be stopped at 21 days;
ii) women in the two middle groups with an intermedi-
ate GTN risk who require an active follow-up for more
than 21 days before taking the decision to treat; and, iii)
women in the higher group with a high GTN risk who
might be treated right after the 21 days of follow-up.
Note that the lower typical trajectory is characterized by
low initial hCG values; hence, the women in this group
might be identified by the first hCG value [7].
One should keep in mind that the diagnostic accuracy

features of our method may have been underestimated
because of the reliance on an imperfect gold standard
(The FIGO criteria). A more reliable evaluation would
have been obtained if histological proofs had been avail-
able for all women.
In the present study, we did not consider the initial

type of mole because, despite pathological and clinical
differences, the management of women with complete
or partial mole is the same [7]. However, this distinc-
tion might be beneficial because these two types do not
have the same risks of developing complications: 0.5 to
9.9 % vs. 20 %, respectively [9]. Further investigations
on a larger sample of sujects or on the complete-mole
part of the dataset are needed. A polytomous logistic
regression could be coupled with the classification
model to include predictors of group membership, such
as the type of mole.
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The present method may be applied to other clin-
ical classification problems that involve longitudinal
measurements and comply with compartment model-
ing. Further applications are needed to establish
whether the present method that relies on compart-
ment models leads always to more clinically useful
classifications and more reproducible diagnostic ac-
curacies than methods that rely on non-biological
models.

Conclusions
The use of a compartment model may give a clinical
sense to specific trajectory classifications and hence be
useful for diagnostic, prognostic, or therapeutic pur-
poses. In the example of the hydatidiform mole, the
application of the method to the hCG measurements led
to earlier diagnoses of GTN than the classical FIGO
criteria and to more reproducible results than those ob-
tained with purely mathematical models. Applications
on other examples are undeway.
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