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How and how much does RAD-seq bias
genetic diversity estimates?
Marie Cariou1,2* , Laurent Duret1 and Sylvain Charlat1

Abstract

Background: RAD-seq is a powerful tool, increasingly used in population genomics. However, earlier studies have
raised red flags regarding possible biases associated with this technique. In particular, polymorphism on restriction sites
results in preferential sampling of closely related haplotypes, so that RAD data tends to underestimate genetic diversity.

Results: Here we (1) clarify the theoretical basis of this bias, highlighting the potential confounding effects of
population structure and selection, (2) confront predictions to real data from in silico digestion of full genomes and (3)
provide a proof of concept toward an ABC-based correction of the RAD-seq bias. Under a neutral and panmictic
model, we confirm the previously established relationship between the true polymorphism and its RAD-based
estimation, showing a more pronounced bias when polymorphism is high. Using more elaborate models, we show
that selection, resulting in heterogeneous levels of polymorphism along the genome, exacerbates the bias and leads to
a more pronounced underestimation. On the contrary, spatial genetic structure tends to reduce the bias. We confront
the neutral and panmictic model to “ideal” empirical data (in silico RAD-sequencing) using full genomes from natural
populations of the fruit fly Drosophila melanogaster and the fungus Shizophyllum commune, harbouring respectively
moderate and high genetic diversity. In D. melanogaster, predictions fit the model, but the small difference between
the true and RAD polymorphism makes this comparison insensitive to deviations from the model. In the highly
polymorphic fungus, the model captures a large part of the bias but makes inaccurate predictions. Accordingly, ABC
corrections based on this model improve the estimations, albeit with some imprecisions.

Conclusion: The RAD-seq underestimation of genetic diversity associated with polymorphism in restriction sites
becomes more pronounced when polymorphism is high. In practice, this means that in many systems where
polymorphism does not exceed 2 %, the bias is of minor importance in the face of other sources of uncertainty, such
as heterogeneous bases composition or technical artefacts. The neutral panmictic model provides a practical mean to
correct the bias through ABC, albeit with some imprecisions. More elaborate ABC methods might integrate additional
parameters, such as population structure and selection, but their opposite effects could hinder accurate corrections.

Keywords: Population genomics, Reduced representation genomics, Allele drop-out, ABC, Non-neutral model,
Population structure

Background
Reduced representation genomics aim at sequencing par-
ticular parts of the genomes of many individuals, rather
than full genomes of one or a few individuals, in a single
sequencing reaction. One such approach, RAD-seq (and
related protocols) makes use of restriction enzymes to

target DNA regions flanking cut sites that are more or less
randomly distributed throughout the genome [1, 2].
Among other applications, this technique can provide
genome wide estimates of population genetic diversity.
Previous studies, however, have emphasized that RAD-seq
diversity estimates can be systematically biased [3–5],
impeding the use of RAD-seq as a standardised tool
to measure and compare genetic diversity across
study systems. First, heterogeneity in base compos-
ition along genomes implies that any particular cut
site deviates to some extent from a random distribu-
tion across the genome [6]. Because base composition

* Correspondence: marie.cariou@unamur.be
1Université de Lyon, Université Lyon 1, CNRS, UMR 5558, Laboratoire de
Biométrie et Biologie Evolutive, 43 boulevard du 11 novembre 1918,
Villeurbanne F-69622, France
2Current address: Laboratory of Evolutionary Genetics and Ecology, URBE,
University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Cariou et al. BMC Evolutionary Biology  (2016) 16:240 
DOI 10.1186/s12862-016-0791-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s12862-016-0791-0&domain=pdf
http://orcid.org/0000-0002-2544-579X
mailto:marie.cariou@unamur.be
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


and polymorphism can themselves be linked (e.g. lower
GC content in neutral and thus more polymorphic re-
gions), this can impact diversity estimates. Particular mo-
tifs present in the restriction site might also be enriched in
some particular regions of the genomes (e.g. motifs corre-
sponding to protein domains [7]).
Arguably, such biases probably exist for any kind of

molecular marker, because of the inherent contradiction
between “targeted” and “random” sequencing. But RAD-
seq also presents an additional bias caused by poly-
morphism on restriction sites; just as its ancestor, the
AFLP technique, although in a more subtle way [8, 9].
With the AFLP, any loss of restriction site turned an het-
erozygous to a seemingly homozygous genotype. In
RAD-seq, sequencing depth can be used to identify such
cases, and the presence/absence of restriction sites is not
the primary source of information. Nevertheless, this
Allele Drop Out (ADO) leads to underestimate the poly-
morphism, because of the linkage disequilibrium be-
tween the restriction sites and SNPs within the RAD
sequences. In more simple terms, individuals or haplo-
types that are more closely related than the population
average tend to share the same state at the restriction
site (presence or absence), and are thus over-represented
in RAD-seq datasets.
Here we focus on this latter bias, hereafter simply re-

ferred to as “the RAD-seq bias”. The impact of ADO has
been investigated in several earlier studies [10, 11],
where difference in coverage between loci was proposed
as a solution to detect null alleles. Here we do not con-
sider this option, which requires a high sequencing
depth that is not always achieved. We rather aim at a
better understanding of this bias, through the confronta-
tion of simulated and empirical data. Simulations were
first performed under a Wright-Fisher neutral and pan-
mictic model, in order to confirm the previously estab-
lished relationship between the true polymorphism and its
RAD-based estimate. We further explored the potential
consequences of deviations from a neutral and panmictic
model. We show that population structure tends to reduce
the RAD-seq bias, because RAD-seq underestimates di-
vergence within but not between populations. In contrast,
variations in polymorphism along the genome, which is a
typical signature of selective constraints, tend to intensify
the RAD-seq bias, because regions of low polymorphism
contribute disproportionally to the data.
We then confronted theoretical predictions to ideal em-

pirical data, that is, in silico digestions of full genomes
from natural populations of the fruit fly Drosophila mela-
nogaster (DPGP [12]), harbouring moderate polymorph-
ism, and the fungus Schizophyllum commune [13],
harbouring high polymorphism. These two case studies
generally confirm the expected relation between the level
of polymorphism and the intensity of the RAD-seq bias:

the bias is much stronger in the highly polymorphic spe-
cies. In D. melanogaster, the bias is not intense enough to
assess potential deviations from the neutral and panmictic
model. In S. commune this model captures a large part of
the bias, but the observed RAD polymorphism falls out of
its predicted distribution. Accordingly, ABC corrections
based on this model are satisfactory in D. melanogaster,
but less accurate in S. commune. Although our results
confirm those of previous studies having raised red flags
regarding the RAD-seq bias [8, 9], we would argue that in
many species, where polymorphism is low, this problem is
of negligible importance in the face of other sources of un-
certainty. In very polymorphic species, our ABC correc-
tion can mitigate the bias, although population structure,
selection, or yet unidentified additional factors, introduce
some imprecision in this correction.

Methods
Simulations and genetic diversity measures
To measure the theoretical impact of the RAD-seq bias,
we simulated sequence data and retrieved RAD tags in
silico. Each simulation consisted in the generation of coa-
lescents for 1000 genetically unlinked loci, with complete
linkage within loci, in four haploid lineages, using the ms
programme [14]. Seq-gen was then used to produce se-
quences of 10 kb for each locus [15]. To generate RAD-
seq data, we randomly merged by pairs the four haploid
genomes to form two diploids, and searched ten randomly
defined restriction sites of 8 bp (searching for more than
one motif increases the number of RAD loci without
increasing the alignment size and computing time).
This yielded an average of 1500 RAD loci of 100 bp
per genome.
In the first model, we assumed the population was

diploid, unstructured, and θ, the population mutation
rate (4*Ne*μ) was homogeneous along the genome. In a
second model, we explored the potential consequences
of selection by assigning different θ values to different
groups of loci. Specifically, we assumed that 70 % of the
genome had a given θ value, while θ was twice smaller
in 20 % of the genome, and 10 times smaller in the
remaining 10 % of the genome. To mimic variations in
the fraction of coding regions and selection intensity,
similar simulations were run with other proportions (50,
40 and 10 % instead of 70, 20 and 10 %) and even more
heterogeneous θ (reduced 10 fold and 100 fold instead
of 2 fold and 10 fold). In these simulations, πtrue is the
mean of the θ values, weighted by their respective propor-
tions in the genome. Finally, in a third model, we assumed
θ was homogeneous along the genome but introduced
spatial structure by sampling the two diploid genomes in
two populations having diverged for a time t. For all
simulations, θ values were randomly sampled from a
uniform distribution between −5 and −1 of log10(θ),
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thus corresponding to θ values ranging from 10−5 to 10−1

(program commands are provided in supplementary
materials).
To measure the RAD-seq bias in real data, we per-

formed in silico RAD-seq experiments, using full gen-
ome sequences from natural populations of Drosophila
melanogaster [12] and Schizophyllum commune [13]. For
both species, the sequences that are available correspond
to haploid genomes. To mimic real RAD-seq experi-
ments, which are generally performed on diploid indi-
viduals, we randomly selected pairs of haploid genomes
coming from the same population, to generate diploid
individuals (Additional file 1: Table S1). RAD tags were
then retrieved from each individual.
In all analysis, we calculated π, the nucleotide diversity,

as the average genetic distance across loci between two
diploid specimens. This distance was either computed
from sequences associated with an intact restriction site
that would actually be retrieved in a RAD experiment
(πRAD) or from all sequences at the same loci (πtrue). This
later value should thus represent an unbiased measure of
nucleotide diversity at RAD loci. We evaluate the intensity
of the RAD-seq bias by comparing πRAD with πtrue. Details
for these calculations are given below:

π ¼
Xk¼n

k¼1
πk=

Xk¼n

k¼1
Lk

where n is the number of loci in that individual, Lk is the
length of locus k (here L = 100 for all RAD loci), and πk
is the genetic distance at locus k, calculated as follows:

πk ¼ 1
h1þ h2

�
Xi¼h1

i¼1

Xj¼h2

j¼1
dij

where h1 and h2 are the number of haplotypes present
in individuals 1 and 2 (in the case of πRAD calculations)
while h1 = h2 = 2 for πTRUE calculations. dij is the genetic
distance between allele i and j.
In data simulated with spatial structure, the same

values (also called π for simplicity) correspond to mea-
sures of the divergence between the two subpopulations.

ABC for the estimation of nucleotidic diversity from RAD
data
We used Approximate Bayesian Computations (ABC) to
correct RAD-seq estimates of genetic polymorphism. In
these simulations, as in our first model, we assumed the
population was diploid, unstructured, and θ was homo-
geneous along the genome. We considered the following
summary statistics: (1) πRADobs, the observed nucleotidic
diversity in RAD-seq data (average distance between
individuals) and (2) the proportion of loci in each indi-
vidual shared with the other one. Calculation of the pos-
terior distribution of θ for each observed dataset was
performed with functions from the R package abc [16].

We used a tolerance rate of 0.05 and local linear regres-
sions to adjust the accepted simulations to the observed
data, and tested our approach by cross-validation.

Results
The RAD-seq bias under a neutral and panmictic model
In order to validate our approach, we first aimed at re-
trieving the previously established effects of ADO on the
RAD-seq polymorphism in unstructured populations
under a neutral model. To this end, RAD-seq data was
obtained from simulated genomes. In a panmictic popu-
lation evolving neutrally, the population mutation rate
(θ = 4*Ne*μ) is expected to equal the nucleotidic diver-
sity π, the average distance between haplotypes sampled
randomly within the population. In the present analysis,
π is measured using pairs of diploid specimens. As ex-
pected, we observed in our simulations that πtrue (the
mean genetic distance between individuals at all RAD
loci, regardless of the actual state of the restriction site)
is an unbiased estimate of θ. However, πRAD, measured
using sequences flanking intact restriction sites only, is
an underestimate of θ; a bias that increases with the
level of polymorphism (Fig. 1).

The RAD-seq bias under non neutral and spatially structured
models
Real world populations do not necessarily follow the
neutral panmictic model. Some regions of the genome are
submitted to more frequent or intense episodes of selec-
tion than others, increasing the heterogeneity of the poly-
morphism along the genome. Population structure can
also exist at various degrees, producing more or less pro-
nounced genetic differentiation between sub-populations.
In an attempt to provide a more general picture of the
plausible scope of the RAD-seq bias, we thus explored the
consequences of relaxing the assumptions of neutrality
and panmixia.
First, the impact of selection was investigated by im-

posing heterogeneity in polymorphism along simulated
genomes. Using this model, we observe again that πtrue is
an unbiased estimate of θ (even when θ is not homoge-
neous along the genome) while πRAD is an underestimate.
In addition, we find that heterogeneity in θ amplifies the
bias (Fig. 2). We propose the following interpretation for
this result: in regions with higher polymorphism, the
chances of gaining or losing a RAD locus due to muta-
tions at the restriction site are higher, and thus the density
of RAD markers shared across individuals in these regions
is lower. In other words, genomic regions with a higher
degree of polymorphism tend to be under-represented in
RAD-seq data.
The impact of deviations from panmixia on the RAD-

seq bias was investigated using a third model. Here we
had the a priori intuition that population structure
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should reduce the intensity of the RAD-seq bias. Indeed,
the bias in the sampling of coalescents in RAD-seq data
arises from the fact that pairs of haplotypes correspond-
ing to shorter coalescents are more frequently associated
with restriction sites having the same state (present or
absent), and are thus overrepresented in RAD data. Such
a problem should be reduced if RAD-seq is used to esti-
mate divergence among isolated populations, because

the age of the population split imposes a lower bound to
coalescence time. To take an extreme and illustrative
case, the RAD-seq bias should not affect the estimation
of genetic divergence among strictly isolated species
having evolved separately for far longer than their co-
alescence time. Simulations confirmed this conjecture
(Fig. 3). As expected, the RAD-seq bias (here calculated
on the global population) was reduced by spatial struc-
ture and the intensity of the bias was inversely related to
the time of divergence between sub-populations (here π
measures polymorphism within the global population).
In brief, RAD-seq underestimates divergence within but
not between populations. This is consistent with the
earlier finding of Gautier et al. [8] that ADO leads to
overestimate Fst. Indeed, this differentiation index

a b

Fig. 1 a The relation between πtrue, the nucleotidic diversity measured using all individuals at RAD loci, and πRAD, measured using only loci
associated with an intact restriction site, simulated under a neutral and panmictic model. b The relation between the amplitude of the RAD
polymorphism bias (πRAD / πtrue) and the level of polymorphism. Solid lines represent local linear regressions
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Fig. 2 The relation between πtrue and πRAD in a non neutral model.
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Fig. 3 The relation between πtrue and πRAD in a spatially structured
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measures the discrepancy between intra and inter-
population polymorphism, which means that if only
intra-population polymorphism is under-estimated, the
bias will increase the Fst.

Comparing empirical data with simulations
We used in silico digestions of full genomes (with
phased haplotypes) from natural populations to assess
the concordance between simulated and real data. Most
species for which such data is available harbour a low to
moderate genome-wide diversity (below 2 %), under
which circumstances the RAD-seq bias is expected to be
negligible. This is for example the case in the fruit fly D.
melanogaster. In this species, πtrue ranged from 0.61 %
to 0.73 % in the four populations studied. For such
values, simulations under the neutral panmictic model
predict that πRAD should only be 5 % lower than πtrue
(Fig. 1b). The observed πRAD values fit this prediction,
ranging from 0.59 % to 0.70 % in the four populations.
However, with so small differences between πRAD and
πtrue, this case study provides only limited power to assess
the pertinence of the model.
We thus looked for full genome data from natural

populations of more polymorphic species, which would
provide more informative comparisons between simu-
lated and real data. To our knowledge, the appropriate
data exist only for the fungus Schizophyllum commune
(NB: transcriptome data exist for several other species
harbouring high polymorphism [17], but these sequences
are not appropriate to mimic a RADseq experiment be-
cause i) these datasets do not provide phased haplotypes,
and ii) the presence of introns in gene leads to reduce
the genetic linkage between sites within mRNAs, which
mitigates the RAD-seq bias). Sequences available from
this species originate from two populations, from North
America and Russia, each characterised by very high
polymorphism (πTRUE = 9.7 % and 7.4 %, respectively).
Accordingly, πRAD is substantially smaller than πTRUE in
both cases (πRAD = 6.2 % and 3.5 %, respectively).
To assess the pertinence of the neutral panmictic

model to predict the bias under such high levels of poly-
morphism, we computed the distribution of πRAD values
expected with population mutation rates of 9.7 % and
7.4 % (corresponding to the true polymorphism values
in the two populations). The results (Fig. 4) show that
the model captures a large part of the bias (the expected
πRAD values are much closer to the observed πRAD
values than to the πTRUE values), but not very accurately:
in both populations, the observed πRAD values fall out of
their expected distribution. The discrepancy between the
data and the model predictions is strongest in the
American population, where the bias is less intense than
predicted. In the Russian population, the bias is slightly

more intense than predicted, although the observed value
falls very close to the expected distribution.

Partial corrections of the RAD-seq bias through ABC
under a neutral panmictic model
We explored the possibility of using simulations from
the neutral panmictic model to correct, at least partially,
the RAD-seq estimates of polymorphism, through Ap-
proximate Bayesian Computation. The principle of this
approach is to use the simulated relation between the
true polymorphism and some summary statistics (e.g.
proportion of shared RAD loci between specimens,
proportion of homozygous loci) to infer corrected poly-
morphism values from the values of these statistics in
empirical data. We developed such an ABC approach
and first performed a cross-validation test, that is, tested
our ability to correctly infer the input parameter values
of simulations using the simulated data itself (here the
simulated data is treated as an observation and is thus
called “pseudo-observed”).
Pseudo-observed data was generated with different θ

values, and for each simulated data set, the observed
RAD genetic distance was calculated, as well as the pro-
portion of RAD loci shared between the two specimens.
Using these two summary statistics, we were able to pre-
cisely infer the input parameter values (Fig. 5). Note-
worthy, this cross validation is only a quality control,
showing that the ABC approach can be used to retrieve
the true polymorphism from the observed RAD data if
the data follow the exact same model as the simulations.
We then tested this approach on real data, using in silico
RAD-seq from D. melanogaster and S. commune (Fig. 5).
The ABC-corrected RAD polymorphism value was close
to the true polymorphism in D. melanogaster, where the
RAD-seq bias was very low anyway. In S. commune,
ABC estimates for the two populations are also much
closer to the true polymorphism values than the uncor-
rected RAD values, with some discrepancies, as expected
from the above discussed deviations of these populations
from the neutral panmictic model. While the uncor-
rected RAD polymorphism was about half of the true
polymorphism, the ABC corrected values were only
20 % away from the true values: slightly too low in the
American population, slightly too large in the Russian
population.

Discussion
Building on previous studies [8, 9], we further explored
here the impact of allele drop-out on the estimation of
genetic diversity from RAD data. We first confirmed earl-
ier findings based on simulations in a neutral and panmic-
tic model: RAD-based estimates of diversity are lower
than the true polymorphism, and this bias becomes more
pronounced as the true polymorphism increases. Using
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more elaborate models, we further showed that deviations
from the neutral and panmictic model can have complex
and contradictory outcomes. Assigning different degrees
of polymorphism to different regions of the genome,
which mimics the effects of natural selection on genomic
variation, tends to exacerbate the RAD-seq bias. This
probably results from an excessive contribution to the
data of the least polymorphic genomic regions, subject to
the most intense purifying selection. We also simulated
sampling of specimens from more or less isolated subpop-
ulations, and thus showed that population structure
should mitigate the bias. In other words, RAD-seq data
tends to under-estimate divergence within but not be-
tween populations.

We used “ideal” empirical data, that is, RAD-seq data ob-
tained from in silico digestion of full genomes from natural
populations, to assess potential deviations from the neutral
and panmictic model. Data from the fruit fly D. melanoga-
ster confirmed that the bias is of negligible importance
when the polymorphism is low, offering little power to as-
sess the validity of the model. On the contrary, in the fungi
S. commune, where the true polymorphism approaches
10 %, the bias is severe, producing a 50 % underestimation
of the diversity. The neutral and panmictic model captures
most of this effect, but the observed RAD-based values
nevertheless fall out of the model predictions.
We investigated whether these deviations might be

due to selection or spatial structure. In the American
population, where the bias was weaker than expected,
one specimen (from Florida) was significantly differenti-
ated from all others (from Michigan, Fig. 1 in [13]).
However, excluding this specimen from the analysis only
has a minor effect on the bias for this population (not
shown), suggesting the discrepancy with our theoretical
expectation is not necessarily explained by population
structure. We also explored whether heterogeneity in θ
along the genome might occur in this data set. We found
that the distribution of the SNPs across RAD tags was in-
deed significantly more heterogeneous than expected
under a Poisson process (Additional file 1: Figure S1).
Moreover, distributions of RAD distances were always sig-
nificantly more heterogeneous in the Russian population,
which might contribute to the excessive bias observed in
this population (Additional file 1: Figure S2).
The fact that simulations can capture the RAD-seq bias,

at least in part, opens the possibility of correcting estima-
tions through an ABC approach. We developed such an
approach based on simulations from the neutral panmictic
model, where the number of parameters to be estimated is
low enough. The results are encouraging: the corrected
RAD-polymorphism values are much closer to the real
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polymorphism than the raw values. However, in accord-
ance with the above-discussed deviations from the model,
the corrections are inaccurate. It is clear that robust esti-
mations of diversity measures from RAD-seq data would
require more elaborate ABC models, including the poten-
tial effects of population structure and selection, or other,
yet unidentified, relevant parameters. However, our simu-
lations suggest that a given observed RAD polymorphism
might be indicative of a certain θ value if the population is
panmictic, a smaller θ if individuals were sampled from
slightly divergent populations, or a larger θ if selection
produced strong heterogeneity in θ along the genome. In
other words, an excessive number of parameters, with
contradictory effects, might prevent convergence of the
model toward a single optimal solution.

Conclusion
Our analysis confirmed the tendency of RAD data to
underestimate polymorphism. Regardless of the model
used, simulations indicate this bias is of minor import-
ance when the polymorphism is below 2 %, which is the
case in most species, at least in animals [17]. In silico
RAD experiments on full genome data from natural
populations confirm this prediction, which would un-
doubtedly be reinforced by more realistic RAD datasets,
where all sorts of additional biases, from technical issues
at the bench to downstream bioinformatics, introduce
more important sources of uncertainty [3–5, 18]. Never-
theless, when the polymorphism is large the RAD-seq
bias becomes of significant concern, and needs to be
kept in mind. While ABC-corrections based on a neutral
and panmictic model can partially solve the problem, de-
viations from this model introduce some uncertainty in
these corrections. Developing more robust corrections,
although desirable, might face the difficulty of estimating
too many parameters with insufficient data.
Once a bias has been found to affect a widely used

technique such as RAD-seq, it seems crucial to under-
stand its causes and evaluate its range, which was the
purpose of the present study. This being said, one
should also keep in mind that any set of molecular
markers, from single genes to “random” shotgun sequen-
cing, also present various kinds of bias, because it is vir-
tually impossible to randomly sample genomic data.
Until full genomes will be made achievable at reasonable
costs for population genomics studies, RAD-seq thus re-
mains, in our opinion, an optimal compromise.

Additional file

Additional file 1: Table S1. Genomic sequences used for the in silico
RAD-seq experiments. 2. Polymorphism heterogeneity along the genome
of Schizophyllum commune. Figure S1. Theoretical and observed
distributions of genetic distances (number of SNPs between RAD

tags) between two American S. commune individuals (A10 and A13,
on the left) and between 2 Russian individuals (K1 and K3, on the
right). Blue: observed distribution of genetic distances; red: Poisson
distribution, expected under a model of homogeneous polymorphism
along the genome. Kolmogorov-Smirnov test, D = 0.2404, p-value
< 2.2e-16 and D= 0.3881, p-value < 2.2e-16. Figure S2. Observed distributions
of genetic distances (number of SNPs between RAD tags) between 2 American
S. commune individuals (A10 and A13) and 2 Russian individuals (K1 and K3).
Kolmogorov-Smirnov test, D= 0.2916, p-value < 2.2e-16. The figure shows that
the distribution of RAD distances is more heterogeneous in the Russian
population. 3. Examples of command lines for ms and seq-gen. (DOC 378 kb)
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