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Renormalization group second order approximation for singularly perturbed nonlinear ordinary differential equations

We consider a two time scale nonlinear system of ordinary differential equations. The small parameter of the system is the ratio ε of the scales. We search for an approximation involving only the slow time unknowns and valid uniformly for all times at order O(ε 2 ). It is a classical problem, studied using the Tikhonov's singular perturbation theorem. We develop an approach leading to a higher order approximation using the renormalization group (RG) method. We apply it in two steps. In the first step we show that the RG method allows to approximate the fast time variables by their RG expansion taken at the slow time unknowns. Next we study the slow time equations, where the fast time unknowns are replaced by their RG expansion and show the second order uniform error estimate. The procedure is computationally less demanding than the classical Vasil'eva-O'Malley expansion and allows a higher order extension of Hoppensteadt's result on the Tikhonov singular perturbation theorem for infinite times.

Introduction

In 1994, Chen, Goldenfeld and Oono proposed a simple and unified method for treating asymptotic perturbation problems [START_REF] Chen | Renormalization group theory for global asymptotic analysis[END_REF], [START_REF] Chen | Renormalization group and singular perturbations: Multiple scales, boundary layers, and reductive perturbation theory[END_REF]. This procedure originates from the quantum field theory and has been called the renormalization group (RG) method. In references [START_REF] Chen | Renormalization group theory for global asymptotic analysis[END_REF] and [START_REF] Chen | Renormalization group and singular perturbations: Multiple scales, boundary layers, and reductive perturbation theory[END_REF] it is demonstrated that the RG method has several advantages compared with the conventional methods of multiscale expansion. One advantage of the RG method is that its starting point is a naive perturbation expansion. Therefore, special intuition or experience to guess the asymptotic expansion are not needed. The RG method applies to solving linear and nonlinear boundary layer problems. It is well-known that straightforward perturbation expansions lead to the appearance of secular terms, i.e., terms exhibiting unbounded growth in time. Using the RG method, these terms are renormalized and lead to the RG equation which yields correct asymptotic expansions. Unexpectedly, the RG method seems to automatically identify all scales relevant to the problem [START_REF] Chen | Renormalization group theory for global asymptotic analysis[END_REF], [START_REF] Chen | Renormalization group and singular perturbations: Multiple scales, boundary layers, and reductive perturbation theory[END_REF]. Another remarkable property of the RG method is that it is sufficient to construct only the inner expansion. The RG method introduced in Ref. [START_REF] Chen | Renormalization group theory for global asymptotic analysis[END_REF], [START_REF] Chen | Renormalization group and singular perturbations: Multiple scales, boundary layers, and reductive perturbation theory[END_REF] has been further developed in Ref. [18], [START_REF] Mudavanhu | A New Renormalization Method for the Asymptotic Solution of Weakly Nonlinear Vector Systems[END_REF] and studied rigorously in Ref. [START_REF] Lee Deville | Analysis of a renormalization group method and normal form theory for perturbed ordinary differential equations[END_REF] and in a series of articles [START_REF] Chiba | C 1 approximation of vector fields based on the renormalization group method[END_REF]- [START_REF] Chiba | Extension and Unification of Singular Perturbation Methods for ODEs Based on the Renormalization Group Method[END_REF] by Chiba. The mathematically rigorous results apply to systems of ordinary differential equations of the form

dx dt = F x + εh(x, t),
where ε > 0 is a small parameter and F is a matrix with purely imaginary eigenvalues. Treating this problem using the naive expansion approach results in secular terms and the obtained asymptotic expansions are not valid for time intervals of the length

T = O( 1 ε
). In contrast to the naive expansion approach, the RG method provides a good approximation also for long times as shown in [START_REF] Chiba | C 1 approximation of vector fields based on the renormalization group method[END_REF]- [START_REF] Lee Deville | Analysis of a renormalization group method and normal form theory for perturbed ordinary differential equations[END_REF].

We note a number of papers on the application of the RG method to partial differential equations and, in particular, to the geostrophic flows, see [START_REF] Moise | Renormalization Group Method. Applications to Partial Differential Equations[END_REF], [START_REF] Temam | On the solutions of the renormalized equations at all orders[END_REF], [START_REF] Ziane | On a certain renormalization group method[END_REF]. For a study of the shadow limit for systems of ODEs coupled with nonlinear parabolic equations, we refer to [START_REF] Marciniak-Czochra | Shadow limits via the renormalization group method and the center manifold method[END_REF]. In the remainder of this paper we focus on systems of nonlinear ODEs.

We consider the asymptotic analysis of the ODE system with two characteristic times. Their ratio is equal to a small parameter ε > 0. Motivated by biological applications, we focus on the Cauchy problem

du ε dt = f (u ε , v ε ), t > 0, u ε (0) = u 0 ; (1) Tikh1A ε dv ε dt = -αv ε + Φ(u ε , v ε ), t > 0, v ε (0) = v 0 .
(2) Tikh1B

The asymptotic analysis of problem (1)-( 2) attracted a considerable interest in the literature.

The convergence to the solutions of the reduced system -αv + Φ(u, v) = 0 and

du dt = f (u, v), (3) Tikh1BS 
was established for the stable roots v = φ(u) in the seminal theorem by Tikhonov (see e.g., [START_REF] Banasiak | Methods of small parameter in mathematical biology[END_REF] and [START_REF] Tikhonov | Translation of: Differentsial'nye uravneniiya)[END_REF]). It holds for finite time intervals and its extension to the infinite time interval is due to Hoppensteadt [START_REF] Hoppensteadt | Singular perturbations on the infinite interval[END_REF]. In applications, it is important to derive an error estimate for the approximation. For finite time intervals error estimates at all orders are achieved through boundary layer corrections by Vasil'eva and colleges (see [START_REF] Vasil'eva | The Boundary Function Method for Singular Perturbed Problems[END_REF]). The work of Hoppensteadt [START_REF] Hoppensteadt | Properties of Solutions of Ordinary Differential Equations with Small Parameters[END_REF] presents analogous estimates and also formulates, without proof, results for infinite time intervals. For a complete discussion of the subject we refer to a book by Hoppensteadt [START_REF] Hoppensteadt | Analysis and Simulation of Chaotic Systems[END_REF].

As observed by Chen, Goldenfeld and Oono in [START_REF] Chen | Renormalization group and singular perturbations: Multiple scales, boundary layers, and reductive perturbation theory[END_REF], the approach of Hoppensteadt [START_REF] Hoppensteadt | Properties of Solutions of Ordinary Differential Equations with Small Parameters[END_REF], O'Malley [START_REF] O'malley | Singular perturbation methods for ordinary differential equations[END_REF] and Vasil'eva [START_REF] Vasil'eva | The Boundary Function Method for Singular Perturbed Problems[END_REF] requires simultaneous expansion in all equations and leads to complex and non-straightforward calculations. Unlike the classical approach, the RG method allows to apply the asymptotic expansion first to equation (2) and then, independently, to equation [START_REF] Agarwal | An Introduction to Ordinary Differential Equations[END_REF]. After renormalization of the initial condition, a Cauchy problem for a single system of ODEs is obtained. With such choice of approximation, the RG method provides a uniform O(ε 2 ) error estimate on [T, +∞], T = O [START_REF] Agarwal | An Introduction to Ordinary Differential Equations[END_REF]. In addition, we construct effective initial conditions leading to a global O(ε 2 ) estimate.

Another powerful technique for studying system (1)-( 2) is the geometric singular perturbation theory (GSPT). The GSPT requires using normal forms. It applies to compact normally hyperbolic submanifolds of F (u, v) = -αv + Φ(u, v) = 0 , i.e., submanifolds consisting of roots of the nonlinear function F in which the eigenvalues of the gradient of F have non-zero real parts. For a detailed presentation of the method we refer to [START_REF] Kaper | An introduction to geometric methods and dynamical systems theory for singular perturbation problems. analyzing multiscale phenomena using singular perturbation methods[END_REF] and the references therein. The method has similarities to the Tikhonov theory but it is more general. The connection between RG and GSPT is discussed in [START_REF] Lee Deville | Analysis of a renormalization group method and normal form theory for perturbed ordinary differential equations[END_REF]. It is shown that RG provides a systematic method for finding normal forms for large classes of finite-dimensional vector fields. It has advantages over the normal form theory, since it allows systematic identification of secular terms by inspection of naive asymptotic expansions.

In this paper, using the RG theory, we derive an O(ε 2 ) approximation of ( 1)-( 2) that involves only the variables of the slow equations [START_REF] Agarwal | An Introduction to Ordinary Differential Equations[END_REF]. We obtain a Tikhonov type quasi-stationary approximation of order ε 2 for all times. Compared with the seminal work by Hoppensteadt [START_REF] Hoppensteadt | Properties of Solutions of Ordinary Differential Equations with Small Parameters[END_REF] and his monograph [START_REF] Hoppensteadt | Analysis and Simulation of Chaotic Systems[END_REF] our results are new, since we provide a proof of the error estimate of order ε 2 on the infinite interval. Another advantage of our construction is in its simplicity compared to the boundary layers calculations in the classical approach of Vasil'eva. Our presentation is self-contained and accessible to non-specialists in dynamical systems.

The paper is organized as follows. We formally derive the RG equation in Section 2. In Section 3 we derive the effective equations of problem ( 1)-( 2) using the center manifold approach. We notice that they are identical to the RG approximation from Section 2. Next, in Section 4 we introduce the setting in which the reduction to ( 3) is achieved at the order O(ε 2 ) for all times. Our construction works for any isolated stable root v of -αv + Φ(u, v) = 0. In Section 5 we present examples from the biosciences. The technical part of our results is postponed until Section 6.

RG approach to the singular perturbation

Sec2

We study Cauchy's problem (1)- [START_REF] Banasiak | Methods of small parameter in mathematical biology[END_REF]. The nonlinearities f and Φ are defined on R m+1 , m ≥ 1, and take values respectively in R m and R 1 . It is assumed that they are C 2 with bounded derivatives and that problem (1)-(2) has a unique globally defined smooth solution. α is a positive constant.

In order to apply the renormalization group (RG) approach, we change the time scale by setting τ = t/ε. System (1)-( 2) becomes

du ε dτ = εf (u ε , v ε ), dv ε dτ = -αv ε + Φ(u ε , v ε ), u ε (0) = u 0 , v ε (0) = v 0 . ( 4 
) TikhRG1
We now proceed by the usual RG method steps.

1. We pretend that the problem can be solved as a regular perturbation problem and try a naive expansion

u ε (τ ) = u 0 (τ ) + εu 1 (τ ) + ε 2 u 2 (τ ) + . . . , v ε (τ ) = v 0 (τ ) + εv 1 (τ ) + . . . It gives d dτ (u 0 (τ ) + εu 1 (τ ) + ε 2 u 2 (τ ) + . . . ) = εf (u 0 , v 0 )+ ε 2 (∇ u f (u 0 , v 0 )u 1 (τ ) + ∂ v f (u 0 , v 0 )v 1 (τ )) + . . . , d dτ (v 0 (τ ) + εv 1 (τ ) + . . . ) = -α(v 0 (τ ) + εv 1 (τ ) + . . . ) + Φ(u 0 , v 0 )+ ε{∇ u Φ(u 0 , v 0 )u 1 (τ ) + ∂Φ ∂v (u 0 , v 0 )v 1 (τ )} + . . . .
We sort terms with respect to the powers of ε. Therefore, at order zero we have

d dτ v 0 (τ ) = -αv 0 + Φ(u 0 (τ ), v 0 (τ )) and d dτ u 0 (τ ) = 0. ( 5 
) RGSP1
We set u 0 (0) = A and v 0 (0

) = B (6) RGSP2 Then u 0 (τ ) = A. ( 7 
) RGSP2A
In order to continue we have to make additional assumptions on Φ.

First, we restrict ourselves to the case with -αv + Φ(A, v) = 0 having a unique solution. This assumption follows the Tikhonov theory and we make it here to streamline the presentation. The assumption will be relaxed in Section 4.

Assumption 1 It holds

-κ 0 ≤ -ξ := -α + ∂Φ ∂v ≤ -κ < 0 (8) HRG
in R m+1 for some positive constants κ 0 and κ 1 .

We denote by φ(A) the unique root of -αv + Φ(A, v) = 0.

Dec1

Lemma 1 Under hypothesis [START_REF] Chiba | Analysis of a renormalization group method and normal form theory for perturbed ordinary differential equations[END_REF] we have the estimate Proof. Denote by sign µ (•), µ ∈ R regularizations of the sign function that converge to the sign function for µ passing to zero. Multiplying equation ( 5) by regularized sign (v 0 (τ ) -φ(A)) and passing to the zero limit of the regularization parameter µ, we obtain the estimate [START_REF] Chiba | Extension and Unification of Singular Perturbation Methods for ODEs Based on the Renormalization Group Method[END_REF].

|v 0 (τ ) -φ(A)| ≤ Ce -κτ , ( 9 
We now consider terms of order O(ε) and obtain

d dτ v 1 (τ ) = -αv 1 (τ ) + ∇ u Φ(A, v 0 )u 1 (τ ) + ∂Φ ∂v (A, v 0 )v 1 (τ ), ( 10 
) RGSP3 d dτ u 1 (τ ) = f (A, v 0 (τ )). ( 11 
) RGSP4
In analogy to Lemma 1, we have:

Dec11

Lemma 2 Under hypothesis [START_REF] Chiba | Analysis of a renormalization group method and normal form theory for perturbed ordinary differential equations[END_REF] there is a constant C 1u such that the following estimate holds

|u 1 (τ ) -τ f (A, φ(A)) -C 1u | + | d dτ (u 1 (τ ) -τ f (A, φ(A)))| ≤ Ce -κτ . (12) Decayu1 Consequently, u 1 (τ ) = τ f (A, φ(A)) + C 1u + O(e -κτ ).
Proof. In analogy to Lemma 1.

It remains to calculate v 1 and u 2 . We use equation [START_REF] Lee Deville | Analysis of a renormalization group method and normal form theory for perturbed ordinary differential equations[END_REF] to calculate v 1 . Using ( 9) and ( 12), we find out that equation [START_REF] Lee Deville | Analysis of a renormalization group method and normal form theory for perturbed ordinary differential equations[END_REF] can be written as

d dτ v 1 (τ ) = -ξ A v 1 (τ ) + ∇ u Φ(A, φ(A))(τ f (A, φ(A)) + C 1u ) + F 1 , ( 13 
)
RGSP3AA
where

ξ A = α - ∂Φ ∂v (A, φ(A)) and |F 1 (τ )| ≤ Ce -κ 1 τ , κ 1 < κ.
Note that ξ A is strictly positive. Therefore, we have

v 1 (τ ) = v 1 (0) exp{-ξ A τ } + ∇ u Φ(A, φ(A)) • ∫ τ 0 exp{-ξ A (τ -y)}(C 1u +yf (A, φ(A))) dy + ∫ τ 0 exp{-ξ A (τ -y)}F 1 (y) dy = ∇ u Φ(A, φ(A)) • 1 ξ A ( τ f (A, φ(A)) + C 1u - f (A, φ(A)) ξ A ) + O(e -κ 1 τ ), κ 1 < κ. ( 14 
) U10
At order O(ε 2 ) for u 2 we have

d dτ u 2 (τ ) = ∇ u f (u 0 , v 0 )u 1 (τ ) + ∂ v f (u 0 , v 0 )v 1 (τ ) (15) RGSP4A
Using (9), ( 12) and ( 14), we find out that equation ( 15) can be written as

d dτ u 2 (τ ) = ∇ u f (A, φ(A))(τ f (A, φ(A)) + C 1u ) + ∂ v f (A, φ(A)) ( +∇ u Φ(A, φ(A)) • 1 ξ A ( τ f (A, φ(A))+C 1u - f (A, φ(A)) ξ A ) ) + F 2 , ( 16 
) RGu2
where

|F 2 (τ )| ≤ Ce -κ 1 τ , κ 1 < κ. Therefore, we have u 2 (τ ) = τ 2 2 ( ∇ u f (A, φ(A))f (A, φ(A))+ ∂ v f (A, φ(A))∇ u Φ(A, φ(A)) • 1 ξ A f (A, φ(A)) ) + τ ( ∇ u f (A, φ(A))C 1u + ∂ v f (A, φ(A))∇ u Φ(A, φ(A)) • 1 ξ A ( C 1u - f (A, φ(A)) ξ A ) ) + C 2u + O(e -κ 1 τ ), κ 1 < κ, (17) U10u2
where C 2u is an arbitrary constant vector.

The approximation is now

u ε (τ ) = u 0 (τ ) + εu 1 (τ ) + ε 2 u 2 (τ ) + O(ε 3 ), ( 18 
) RGSP5A v ε (τ ) = v 0 (τ ) + εv 1 (τ ) + O(ε 2 ). ( 19 
) RGSP5B
In most case, we detect immediately the presence of secular terms in u 1 . They can also appear in u 2 and v 1 .

2. The idea of the normalization is to introduce an arbitrary time µ, split τ as τ -µ + µ and absorb the terms containing µ into the renormalized counterpart A(µ) of A. We introduce the renormalization constant

Z 1 = 1 + a 1 ε + a 2 ε 2 . The coefficient A is replaced by (1+a 1k ε+a 2k ε 2 )A k (µ), k = 1, . . . , m.
The coefficients a 2 and a 1 are chosen to eliminate the terms containing µ at order O(ε 2 ).

Our approximation ( 18)-( 19) becomes

u k (τ ) = u 0k (τ ) + εu 1k (τ ) + ε 2 u 2k (τ ) = (1 + a 1k ε + a 2k ε 2 )A k (µ)+ ε(τ -µ + µ)f k ( A(µ)(1 + a 1 ε)), φ(A(µ)(1 + a 1 ε)) ) + εC 1u,k + ε 2 u 2k (τ ), ( 20 
) RGSP6A v = v 0 (µ) + εv 1 (µ) = φ(A(µ)(1 + a 1 ε))+ ε∇ u Φ(A, φ(A)) • 1 ξ A ( (τ -µ + µ)f (A, φ(A)) + C 1u - f (A, φ(A)) ξ A ) . ( 21 
) RGSP6B
We choose a 1k such that the term µf k (Z 1 A, φ(Z 1 A)) is eliminated at the leading order. Hence we have

a 1k (µ)A k (µ) + µf k (A, φ(A)) + C 1u,k = 0, implying a 1k = - µ A k f k (A, φ(A)) - C 1u,k A k , k = 1, . . . , m. ( 22 
) RGSP8
Therefore, for u 1 we have the following expression

u 1 (τ ) = (τ -µ)f ((1 + a 1 ε))A, φ((1 + a 1 ε))A)) + R = (τ -µ)f (A, φ(A)) -ε(τ -µ)(∇ u f (A, φ(A))C 1u + ∂ v f (A, φ(A))∇ A φ(A) • C 1u )- ε(τ -µ)µ ( ∇ u f (A, φ(A))f (A, φ(A)) + ∂ v f (A, φ(A)) ξ A ∇ u Φ(A, φ(A)) • f (A, φ(A)) ) +R, (23) RGSP8A 
where R and its derivative with respect to τ are exponentially small in τ .

Next, expressions ( 14) and ( 22) yield

v 0 (µ) + εv 1 (µ) = φ(A) + ε ( ∇ A φ(A) • a 1 A + + ∇ u Φ(A, φ(A)) • 1 ξ A ( (τ -µ + µ)f (A, φ(A)) + C 1u - f (A, φ(A)) ξ A ) ) = φ(A) + ε(τ -µ - 1 ξ A )∇ u Φ(A, φ(A)) • f (A, φ(A)) ξ A . ( 24 
) U1
We now transform τ into τ -µ+µ and τ 2 into τ 2 -µ 2 +µ 2 in the expression (17) for u 2 (µ).

Inserting formulas [START_REF] Nakata | Stability analysis of multicompartment models for cell production systems[END_REF] and renormalized ( 17) into (20) yields u k (τ ) without secular terms in µ. The terms of order O(ε 2 ), containing only µ and µ 2 , are to be eliminated and only terms containing τ -µ and τ 2 -µ 2 remain. We achieve this goal by choosing appropriate a 2k . After recalling that

∇φ(A)(α - ∂Φ ∂v (A, φ(A)) = ∇ u Φ(A, φ(A)),
we obtain the following expression for u(τ ):

u(τ ) = A(µ) + ε(τ -µ)f (A, φ(A)) -ε 2 (τ -µ) ∇ u Φ(A, φ(A)) • f (A, φ(A)) (ξ A ) 2 ∂ v f (A, φ(A)) + ε 2 2 (τ -µ) 2 ( ∇ u f (A, φ(A))f (A, φ(A))+ ∂ v f (A, φ(A)) ξ A ∇ u Φ(A, φ(A)) • f (A, φ(A)) ) . ( 25 
) fullrenor 3.
The parameter µ is artificial and the solution does not depend on it. Therefore, it has to hold ∂u(τ ) ∂µ | µ=τ = 0 for all τ . After noticing that terms multiplying ε 2 µ cancel, ∂u(τ ) ∂µ | µ=τ = 0 implies the RG equation

dA dτ = εf (A, φ(A)) -ε 2 ∇ u Φ(A, φ(A)) • f (A, φ(A)) (α - ∂Φ ∂v (A, φ(A))) 2 ∂ v f (A, φ(A)). ( 26 
) RGeqSP1
Returning to the original variable t = ετ , we obtain

dA dt = f (A, φ(A)) -ε ∇ u Φ(A, φ(A)) • f (A, φ(A)) (α - ∂Φ ∂v (A, φ(A))) 2 ∂ v f (A, φ(A)), ( 27 
) RGeqSP1A
which is the RG equation we were looking for. For t = O(1) the initial time layer effects became negligible and the approximation is expressed by A(t).

It remains to check the value of the derivative of v(τ

) = v 0 (µ) + εv 1 (µ) with respect to µ at µ = τ . A direct calculation yields ∂v(τ ) ∂µ | µ=τ = ∇φ(A) dA dτ -ε f (A, φ(A)) • ∇ u Φ(A, φ(A)) α - ∂Φ ∂v (A, φ(A)) - ε d dµ ( f (A, φ(A)) • ∇ u Φ(A, φ(A)) (α - ∂Φ ∂v (A, φ(A))) 2 ) = O(ε 2 ).
Therefore, the choice

u ε (t) ≈ A RG (t), ( 28 
) RGAppr1 v ε (t) ≈ φ(A RG (t)) -ε f (A RG , φ(A RG )) • ∇ u Φ(A RG , φ(A RG )) (αA RG -Φ(A RG , φ(A RG ))) 2 , ( 29 
) RGAppr2
where A RG is expressed by [START_REF] Vasil'eva | The Boundary Function Method for Singular Perturbed Problems[END_REF], provides the requested O(ε 2 ) approximation, for times O(1) ≤ t ≤ O(1/ε). The correct behavior for small times is described by the initial time layers, as in the classical literature (see e.g., [START_REF] O'malley | Singular perturbation methods for ordinary differential equations[END_REF], [START_REF] Tikhonov | Translation of: Differentsial'nye uravneniiya)[END_REF] and [START_REF] Vasil'eva | The Boundary Function Method for Singular Perturbed Problems[END_REF]).

Center Manifold Theorem approach to obtain the effective model

SecCMF

In this section we present a formal derivation of the effective equations using the Center Manifold Theorem.

The usual way to study the qualitative behavior of the solutions of the equation

dy dt = Ψ(y), Ψ(0) = 0, ( 30 
) CMT1
is to calculate the Jacobian matrix A = ∇Ψ| y=0 and to study the linearized problem

dy dt = Ay + G(y), G(0) = 0, ∇G(0) = 0. ( 31 
) CMT2
If all the eigenvalues of the matrix A = ∇Ψ| y=0 have non-zero real part, then the Hartman-Grobman theorem applies and the behavior of equation ( 30) in a small neighborhood of 0 is described by equation (31).

If there exist eigenvalues with zero real part, a center manifold W c is spanned by the corresponding (generalized) eigenvectors. In this case the Center Manifold Theorem is used to restrict the analysis to such a "center manifold". For an introduction to the center manifold technique, we quote the classical book by Carr [START_REF] Carr | Applications of Centre Manifold Theory[END_REF].

Our goal is to study behavior of the solution to problem (1)-( 2), namely

du ε dt = f (u ε , v ε ), t > 0, u ε (0) = u 0 ; dv ε dt = - α ε v ε + 1 ε Φ(u ε , v ε ), t > 0, v ε (0) = v 0 ,
for ε → 0. We notice immediately the large difference between the modulus of the eigenvalues related to equation [START_REF] Banasiak | Methods of small parameter in mathematical biology[END_REF] and those related to equation [START_REF] Agarwal | An Introduction to Ordinary Differential Equations[END_REF]. Therefore, it is to be expected that equation (1) will play the role of the center manifold for problem (1)- [START_REF] Banasiak | Methods of small parameter in mathematical biology[END_REF].

More precisely, the solution for (2) is given by

v ε - 1 α Φ(u ε , v ε ) = v 0 e -αt/ε + ( 1 ε e -αt/ε - 1 α δ(t)) * Φ(u ε , v ε ), (32) Eqslave1 
where * denotes the convolution product in time and δ(t) the delta distribution centered at t. Under mild assumptions on Φ, the right hand side converges to zero, as ε → 0. We conclude

that v ε ≈ 1 α Φ(u ε , v ε )
, for small ε. Hence, it is reasonable to assume that v lies on an invariant manifold, which we represent as v = Z(u ε ). On the invariant manifold it holds

dv dt = d dt Z(u) = ∇Z d dt u, ∀t.
We substitute the above identity into (2) and obtain

-αZ(u) + Φ(u, Z(u)) = ε∇Z • f (u, Z(u)). ( 33 
) CMeq1
We expand Z as

Z = Z 0 + εZ 1 + O(ε 2 ).
Sorting terms with respect to their orders of ε, we obtain

O(1) : -αZ 0 + Φ(u, Z 0 ) = 0; O(ε) : -αZ 1 + ∂ v Φ(u, Z 0 )Z 1 = ∇Z 0 • f (u, Z 0 ).
The first equation implies that Z 0 is a root of v -1 α Φ(u, v) = 0. The second equation implies that

Z 1 = ∇Z 0 • f (u, Z 0 ) -α + ∂ v Φ(u, Z 0 ) . Hence v = Z 0 + ε ∇Z 0 • f (u, Z 0 ) -α + ∂ v Φ(u, Z 0 ) . ( 34 
) Approv
To obtain the ODE for u, we substitute expression (34) into (1):

du dt = f ( u, φ(u) -ε ∇ u Φ(u, φ(u)) • f (u, φ(u)) (α - ∂Φ ∂v (u, φ(u))) 2 ) = f (u, φ(u)) -ε ∇ u Φ(u, φ(u)) • f (u, φ(u)) (α - ∂Φ ∂v (u, φ(u))) 2 ∂ v f (u, φ(u)) + O(ε 2 ). ( 35 
) RGeqSP1AC
We note that equation ( 35) is identical to equation [START_REF] Vasil'eva | The Boundary Function Method for Singular Perturbed Problems[END_REF].

Remark 1 It is possible to transform the above intuitive argument into a rigorous one. Nevertheless, most results obtained using the Center Manifold Theorem describe dynamics of small solutions around the origin. In our problem we would like to prove that for small values of the parameter ε we remain for all times in an ε k -neighborhood of the solution of equation [START_REF] Vasil'eva | The Boundary Function Method for Singular Perturbed Problems[END_REF].

The reduction to a neighborhood of zero is not straightforward and we prefer presenting a direct proof, based on the computations from Section 2 and the boundary layers, adopted from Tikhonov's theory.

Main results

Sec4

We start by making basic assumptions on our singularly perturbed system.

Ass1 Assumption 2 Let (f , Φ) ∈ C 3 (R m+1 ) m+1 , m ≥ 1,

and let the algebraic equation

-αy + Φ(x, y) = 0 in R, (36) Root1 
have at least one isolated real root y = y(x).

Ass2 Assumption 3 We suppose that the reduced problem

-αv + Φ(A, v) = 0; dA dt = f (A, v), t > 0, and 
A(0) = u 0 , ( 37 
) Reduced1
has a smooth bounded solution {A, v} on R + and that v is an isolated real root.

Ass3 Assumption 4 We suppose that the chosen root v satisfies

ξ = α -∂ y Φ(x, y)| (x=A,y=v) ≥ M 0 > 0 on R + , (38) Root2 
i.e., that v is a stable root.

In addition, we suppose that the initial datum v 0 is in the basin of attraction of the root v from (37) (i.e., for all δ > 0, there exists t(δ) > 0 such that the solution w of the initial value problem d dt w = -αw + Φ(A(t), w), w(0) = v 0 satisfies |w(t) -φ(A(t))| ≤ δ for t > t(δ)). We furthermore assume that on the interval

I = [min{φ(u 0 ), v 0 }, max{φ(u 0 ), v 0 }] we have α -∂ y Φ(x, y)| (x=u 0 ,y∈I) ≥ M 0 2 > 0. ( 39 
) Root2A
Next, we introduce the initial layer ζ 0 by

dζ 0 dτ = -αζ 0 + Φ(u 0 , φ(u 0 ) + ζ 0 (τ )) -Φ(u 0 , φ(u 0 )), ζ 0 (0) = v 0 -φ(u 0 ) (40) Inn2pbz
(to be compared with ( 9)). Note that by Assumption 4, φ(u 0 ) is uniquely defined and applying Lemma 1 implies

|ζ 0 (τ )| ≤ Ce -M 0 τ . ( 41 
) Dec2
Note that ζ 0 (t/ε) is the classical initial layer function from [START_REF] Hoppensteadt | Properties of Solutions of Ordinary Differential Equations with Small Parameters[END_REF], [START_REF] O'malley | Singular perturbation methods for ordinary differential equations[END_REF] and [START_REF] Vasil'eva | The Boundary Function Method for Singular Perturbed Problems[END_REF].

For an error estimate another assumption is needed:

Ass4 Assumption 5 We suppose that the matrix

( ∇ u f (x, φ(x)) + ∂ v f (x, φ(x)) ⊗ ∇φ(x) ) | x=A (42) Stabil1
satisfies the exponential dichotomy assumption on R + , i.e., we assume that a fundamental solution S of the linear system corresponding to (42) fulfills S(0) = I, ||S(t)S -1 (τ )|| ≤ Ke -κ(t-s) for s ≤ t ≤ ∞ and appropriate positive constants K, κ.

Dichotomy Remark 2 We recall that this is a special case of the exponential dichotomy assumption, stating that there exists a projection P , such that ||S(t)P S -1 (τ )|| ≤ Ke -κ(t-s) for s ≤ t ≤ ∞ and ||S(t)(I -P )S -1 (τ )|| ≤ Le µ(t-s) for s ≥ t ≥ -∞ for appropriate positive constants K, L, κ, µ, [START_REF] Hoppensteadt | Properties of Solutions of Ordinary Differential Equations with Small Parameters[END_REF], [START_REF] Lin | Linear Systems Exponential Dichotomy and Structure of Sets of Hyperbolic Points[END_REF].

Remark2 Remark 3 Let b > 0 and

T b,λ = Int ∪ t∈R + {A(t) + x, φ(A) + y} {|x j |<b, j=1,...,m, y∈I λ (t)} , (43) tube 
where λ(t) is a smooth curve, defined on R + and such that λ(0) = |φ(u 0 )-v 0 | and λ(t) = λ 0 > 0 for t ≥ t 0 . The set I λ is given by

I λ (t) = { (-b, λ(t)), for v 0 ≥ φ(u 0 ), (-λ(t), b), for v 0 < φ(u 0 ). ( 44 
) ilam
Since A is bounded and continuous, and because of (39) in Assumption 4, there exists a tubular domain T b,λ defined by (43) and depicted in Fig. 1, such that (38) and (42) hold true in T b,λ . Note that the existence of exponential dichotomies of the considered form is preserved under small continuous perturbations or continuous perturbations vanishing as t → ∞, see [START_REF] Lin | Linear Systems Exponential Dichotomy and Structure of Sets of Hyperbolic Points[END_REF] or [START_REF] Agarwal | An Introduction to Ordinary Differential Equations[END_REF] respectively. Note that for all times |ζ 0 (t/ε)| ≤ λ(t). We now define C ∞ -cutoff extensions of the nonlinearities f and Φ. Let ξ ∈ R and g a C ∞ -function such that

g(ξ) =    ξ,
for |ξ| ≤ 1/2; 1, for ξ ≥ 1; -1, for ξ ≤ -1.

(45) smoothy

Then we replace Φ by Φ, where

Φ(x 1 , . . . , x m+1 , t) = Φ(x 1 , . . . , xm+1 ), (x 1 , . . . , x m+1 , t) ∈ R m+1 × R + , ( 46 
) Extphi and xj = g( x j -A j (t) b )b + A j (t), (47) Extphi1 
for j = 1, . .

. , m and xm+1 = g( x m+1 -φ(A(t)) λ(t) )λ(t) + φ(A(t)). (48) Extphi2

The function Φ is smooth, globally Lipschitz and satisfies condition (38) for (x, y) ∈ R m+1 and t ∈ R + .

We replace f by f , where 

f (x 1 , . . . , x m+1 , t) = f (x 1 , . . . , xm+1 ), (x 1 , . . . , x m+1 , t) ∈ R m+1 × R + , ( 49 
du ε dt = f (u ε , v ε , t), t > 0, u ε (0) = u 0 ; (50) Tikh1E ε dv ε dt = -αv ε + Φ(u ε , v ε , t), t > 0, v ε (0) = v 0 . (51) Tikh1F
has a unique C 1,1 solution on [0, T ], for all 0 < T < +∞. Furthermore, the C 1,1 norm is uniformly bounded.

Remark 4

The above C ∞ -cutoff extension of the nonlinearities is motivated by the similar extensions in the center manifold theory. For more details we refer to the seminal book of Carr [START_REF] Carr | Applications of Centre Manifold Theory[END_REF], p.16-17.

We study the error function for equation (51) and define

V ε (t): = v ε (t) -φ(u ε (t), t) -ζ0 ( t ε ), t > 0, (52) V1
where φ is the modification of the root φ of equation (36), obtained after replacing Φ by Φ and ζ0 is the solution of problem (40) obtained after replacing Φ by Φ.

Prop0 Proposition 1 |V ε (t)| ≤ Cε, 0 ≤ t, ( 53 
) EstV0
where C does not depend on the extension.

Proof. See Section 6.2.

Next, we study the error function for u ε and define

δ ε (t): = u ε (t) -A(t), t ≥ 0. ( 54 
) Erru1
Under the above assumptions, the error function δ ε satisfies the following Cauchy problem

dδ ε dt = f ( A + δ ε , φ(A + δ ε , t) + ζ 0 ( t ε ) + V ε , t ) -f (A, φ(A), t), t > 0; (55) Errorder1 δ ε (0) = 0. ( 56 
) Tikh1G
The following result holds:

Prop2 Proposition 2 Problem (55)-( 56) has a unique solution δ ε satisfying

|δ ε (t)| ≤ Cε, 0 ≤ t, (57) Erru2 
where C does not depend on the extension and the time interval, furthermore C ≤ λ(0).

Proof. See Section 6.2.

Cor1 Corollary 1 For ε ≤ ε 0 it holds f = f and Φ = Φ in a neighborhood of the solution. Hence the solutions of problem (50)-(51) coincide with the solution of problem ( 1)-( 2). They exist for all times.

Remark 5 In [START_REF] Hoppensteadt | Singular perturbations on the infinite interval[END_REF] the proof that the solution of problem ( 1)-( 2) remains in the tubular neighborhood T b,λ is carried out using a local Lyapunov functional. In our setting, this property results from the error estimate.

longtime Remark 6 Let us replace the exponential dichotomy from Assumption 5 by the assumption that the matrix

( ∇ u f (x, φ(x))+∂ v f (x, φ(x))⊗∇φ(x)
)

| x=A has a symmetric part with non-positive eigenvalues.

(58) Stabil1L Then for every γ > 0,

|δ ε (t)| ≤ Cε 1-γ , 0 ≤ t ≤ Cε -γ , ( 59 
) Erru2T
where C does not depend on the extension and the time interval.

Proof. See Section 6.2.

Th1 Theorem 1 Under Assumptions 2-5, it holds

sup 0≤t≤+∞ |u ε (t) -A(t)| ≤ Cε, (60) ESTO1 |v ε (t) -φ(A(t))| ≤ C(ε + e -M 0 t/ε ), ∀t ∈ R + . ( 61 
) ESTO2
Proof. The statement follows from Propositions 1 and 2.

Prop3 Proposition 3 Let

U ε = v ε -φ(u ε ) + ε α -∂Φ ∂v (u ε , φ(u ε )) d dt φ(u ε ) -ζ 0 (t/ε) -εζ 1 (t/ε),
where

ζ 1 fulfills d dt ζ 1 (t) = -αζ 1 (t), ζ 1 (0) = ∇φ(u 0 ) α -∂Φ ∂v (u 0 , φ(u 0 )) f (u 0 , v 0 ). ( 62 
) zeta1
Under Assumptions 2-5, it holds

U ε (t) = U ε,1 (t) + U ε,2 (t), (63) 
where U ε,1 are U ε,2 are differentiable functions fulfilling

||U ε,1 || L ∞ (R + ) ≤ Cε 2 , ||U ε,2 || L 1 (R + ) ≤ Cε 2 . ( 64 
)
Proof. See Section 6.2.

Prop4 Proposition 4 Let Assumptions 2-5 be satisfied. Define δε (t) = u ε (t) -A(t) -εu 1 (t) -εψ 1 (t/ε) with

{ d dτ ψ 1 = f ( u 0 , φ(u 0 ) + ζ 0 (τ )) -f (u 0 , φ(u 0 )) ψ 1 (0) = - ∫ ∞ 0 ( f ( u 0 , φ(u 0 ) + ζ 0 (τ )) -f (u 0 , φ(u 0 )) ) dτ ( 65 
)
and

         d dt u 1 = ( ∇ u f (x, y) + ∂ v f (x, y) ⊗ ∇φ(x) ) | (x=A,y=φ(A)) u 1 -∂ v f (A, φ(A)) ∇φ(A)•f (A,φ(A)) α-∂Φ ∂v (A,φ(A)) u 1 (0) = -ψ 1 (0). ( 66 
)
Then, the following estimate holds for all t ≥ 0:

| δε (t)| ≤ Cε 2 .
Proof. See Section 6.2.

d dt A 1 = ( 2a 1 + kA 2 -1)pA 1 , A 1 (0) = u 0 1 (73) SC10 d dt A 2 = 2(1 - a 1 + kA 2 )pA 1 -dA 2 , A 2 (0) = u 0 2 (74) SC20 v = 1 1 + kA 2
has been extensively studied in references [START_REF] Getto | Global dynamics of twocompartment models for cell production systems with regulatory mechanisms[END_REF], [START_REF] Nakata | Stability analysis of multicompartment models for cell production systems[END_REF] and [START_REF] Stiehl | Characterization of stem cells using mathematical models of multistage cell lineages[END_REF], motivated by the different time scales inherent to the biological system. Our results provide a rigorous framework to show that in proximity of positive equilibria the distance between the solutions of the reduced system (73)-( 74) and the original system (70)-( 71) is bounded by Cε, and the distance of the solutions of the original system (70)-( 71) and the first order RG-approximation is bounded by Cε 2 for times t ≥ O(1).

ExampleLemma1 Lemma 3 Consider system (70)-( 72) and the corresponding 0th-order RG-approximation ( 73)-( 74). Both systems have a unique positive equilibrium. In the vicinity of this equilibrium Assumptions 2-5 are satisfied.

Proof. We have

α = 1, Φ(x, y) = -kx 2 y + 1, f (x, y) = [(2ay -1)px 1 , 2(1 -ay)px 1 -dx 2 ] T .
Assumption 2 is trivially fulfilled with the isolated root y(x) = φ(x) = 1 1+kx 2 . We note that A is nonnegative for nonnegative initial conditions. Assumption 4 is fulfilled, since α -

∂ y Φ(x, y)| x=A,y=φ(A) = 1 + kA 2 ≥ 1.
To show the boundedness of A, we consider q := A 1 A 2 , which fulfills the initial value problem q(0)

= u 0 1 /u 0 2 d dt q = (2 a 1+kA 2 -1)pq -2(1 -a 1+kA 2 )pq 2 + dq ≤ (2a -1)pq -2(1 -a)pq 2 + dq. Consequently, q > (2a-1)p+d 2 2(1-a)p =: Q implies d dt q < 0. There- fore, q ≤ max{Q, q(0)} =: K 1 . Then we obtain d dt A 1 ≤ ( 2a 1+kA 1 /K 1 -1)pA 1 . Therefore, A 1 > (2a-1)K 1 k implies d dt A 1 < 0. Consequently, A 1 ≤ max{u 0 1 , (2a-1)K 1 k } =: K 2 . This yields d dt A 2 ≤ 2pK 2 -dA 2 . Therefore, A 2 ≤ max{u 0 2 , 2pK 2 d }.
Local Lipschitz continuity and global boundedness imply existence of global solutions, Assumption 3 is thus satisfied. The positive equilibrium is given by ȳ =

1 1+kū ε,2 , Ā1 = ūε,1 = (2a-1)d kp , Ā2 = ūε,2 = 2a-1
k . The linearization of system (73)-(74) around the positive equilibrium has two eigenvalues with negative real parts, due to Vieta's theorem. Therefore, Assumption 5 is fulfilled for the constant solution A = Ā. Since Ā is locally stable it follows that solutions A of system (73)-( 74) with initial values in the vicinity of Ā converge exponentially to Ā. Due to stability of exponential dichotomies with respect to small continuous perturbations, Assumption 5 is fulfilled along trajectories of such solutions A.

The 1st-order RG approximation is given by the following Lemma.

Lemma 4 The 1st-order RG approximation of (70)-( 72) is given by

d dt A RG 1 = ( 2a 1 + kA RG 2 -1 ) pA RG 1 +2apA RG 1 k 2 ( 1 - a 1+kA RG 2 ) pA RG 1 -dA RG 2 ( 1 + kA RG 2 ) 3 ε (75) ARG1 d dt A RG 2 = [2 ( 1 - a 1 + kA RG 2 ) pA RG 1 -dA RG 2 ] ( 1 - 2apA RG 1 k (1 + kA RG 2 ) 3 ε ) (76) ARG2 A RG (0) = [u 0 1 , u 0 2 ] T + 2apu 0 1 ( v 0 -1 1+ku 0 2 ) 1 + ku 0 2 [1, -1] T ε. ( 77 
) ARG3
Proof. We use the expressions for α, Φ, f , φ specified in the proof of Lemma 3, together with

φ(u) = 1 1+ku 2 , ∇φ(u) = [0, -k (1+ku 2 ) 2 ] T , ∂ v f (u, v) = 2apu 1 [1, -1] T . The ODEs for A RG 1 and A RG 2 follow from Theorem 2.
For the initial layer

ζ 0 we obtain ζ 0 (0) = v 0 -1 1+ku 0 2 , d dt ζ 0 = -(1 + ku 0 2 )ζ 0 and therefore ζ 0 (t) = ( v 0 -1 1+ku 0 2 ) e -(1+ku 0 2 )t . Furthermore, it holds f (u 0 , φ(u 0 ) + ζ 0 ) -f (u 0 , φ(u 0 )) = 2aζ 0 pu 0 1 [1, -1] T and ∫ ∞ 0 ( f (u 0 , φ(u 0 ) + ζ 0 ) -f (u 0 , φ(u 0 )) ) dt = ( v 0 -1 1+ku 0 2 ) 1 + ku 0 2 [2apu 0 1 , -2apu 0 1 ] T .
This yields the initial condition. Lemma 3 and Theorem 2 imply that the distance of solutions of the original system (70)-(71) and the first order RG-approximation (75)-( 77) is bounded by Cε 2 for times t ≥ O(1).

Proof of the main results

Sec5

Proof of Proposition 1

Proof. In order to simplify notation, we systematically skip tilde overbars in the proof.

By definition V ε (0) = 0 and

ε d dt V ε = -αv ε + Φ(u ε , v ε , t) -ε d dt φ(u ε , t) + αζ 0 (t/ε) + Φ(u 0 , φ(u 0 , t), t) -Φ(u 0 , φ(u 0 , t) + ζ 0 (t/ε), t) = -αV ε + Φ(u ε , v ε , t) -Φ(u ε , φ(u ε , t) + ζ 0 ( t ε ), t) -ε d dt φ(u ε , t) +α(φ(u 0 , t) + ζ 0 ( t ε )) + Φ(u ε , φ(u ε , t) + ζ 0 (t/ε), t) -α(φ(u ε , t) + ζ 0 ( t ε )) -Φ ( u 0 , φ(u 0 , t) + ζ 0 ( t ε ), t ) = -(α - ∂Φ ⋆ ∂v )V ε -ε d dt φ(u ε , t) + I(t) (78) mathcalVO with I(t) := Φ(u ε , φ(u ε , t) + ζ 0 (t/ε), t) -α(φ(u ε , t) + ζ 0 (t/ε)) -Φ ( u 0 , φ(u 0 , t) + ζ 0 (t/ε), t ) + α(φ(u 0 , t) + ζ 0 (t/ε)) (79) IT and ∂Φ ⋆ ∂v := ∂Φ(u ε , v ⋆ ) ∂v
, where v ⋆ is an intermediate value between v ε and φ(u ε ). In the above calculations we used equation αφ(x) = Φ(x, φ(x, t), t) for all x ∈ R m . Next, we use the smoothness of the extensions and estimate I(t) using the second order derivatives:

|I(t)| = ∫ 1 0 d dη [Φ(u ε (ηt), φ(u ε (ηt)) + ζ 0 (t/ε)) -α(φ(u ε (ηt)) + ζ 0 (t/ε))]dη = ∫ 1 0 t∇ u Φ(u, v)| u=uε(ηt),v=φ(uε(ηt))+ζ 0 (t/ε)) • d dτ u ε (τ )| τ =ηt -t∇ u Φ(u, v)| u=uε(ηt),v=φ(uε(ηt)) • d dτ u ε (τ )| τ =ηt +t∂ v Φ(u, v)| u=uε(ηt),v=φ(uε(ηt))+ζ 0 (t/ε)) ∇φ(u ε (ηt)) • d dτ u ε (τ )| τ =ηt -t∂ v Φ(u, v)| u=uε(ηt),v=φ(uε(ηt)) ∇φ(u ε (ηt)) • d dτ u ε (τ )| τ =ηt -tα∇φ(u ε (ηt)) • d dτ u ε (τ )| τ =ηt + tα∇φ(u ε (ηt)) • d dτ u ε (τ )| τ =ηt dη ≤ tC ∫ 1 0 |ζ 0 (t/ε)| dη ≤ tCe -M 0 t/ε (80) Iestimate
We used that d dt (-αφ(u ε (ηt)) + Φ(u ε (ηt), φ(u ε (ηt)))) = 0 and Assumption 4. Insertion of (80) into (78) yields

ε d dt V ε = -(α - ∂Φ ⋆ ∂v )V ε + g 1 (t) with g 1 (t) := -ε ∇ u Φ(u ε , φ(u ε )) α -∂Φ ∂v (u ε , φ(u ε )) • f (u ε , v ε ) + I(t), satisfying |g 1 | ≤ C(te -M 0 t/ε + ε) ≤ Cε.
Assumption 4, Corollary 1 and Remark 3 imply -(α -∂Φ ⋆ ∂v ) < -M 0 < 0. Using Young's inequality we obtain

|V ε (t)| ≤ ∫ t 0 e -M 0 (t-τ )/ε |g 1 (τ )| ε dτ ≤ Cε. ( 81 
) Y1

Proof of Proposition 2

Sec5.2

We obtain

dδ ε dt = f (A + δ ε , φ(A + δ ε , t) + ζ 0 ( t ε ) + V ε , t) -f (A, φ(A, t), t) δ ε (0) = 0. ( 82 
)
Due to Lipschitz continuity of the right hand side there exists a unique solution to this problem. It holds

f (A + δ ε , φ(A + δ ε , t), t) -f (A, φ(A, t), t) = (∇ u f + ∂ v f ⊗ ∇φ)(η(t))δ ε (83) |f (A + δ ε , φ(A + δ ε , t) + ζ 0 ( t ε ) + V ε , t) -f (A + δ ε , φ(A + δ ε , t), t)| ≤ C(e -M 0 t/ε + ε), ( 84 
)
where η(t) is between A(t) and A(t) + δ ε (t). For the latter estimate we use Proposition 1 and (41). We obtain

dδ ε dt = (∇ u f + ∂ v f ⊗ ∇φ)(η(t))δ ε + g 2 (t)
with |g 2 | ≤ C(e -M 0 t/ε + ε). We note that if ε is small enough, η remains in a predefined vicinity of A. Therefore, we can use the exponential dichotomy property from Remark 2. Then Assumption 5 implies

|δ ε | ≤ Cε||e -M t || L 1 (R) ≤ Cε.
(85) deltaep1s

Proof of Remark 6

Sec5.2A

We start from equation

dδ ε dt = (∇ u f + ∂ v f ⊗ ∇φ)(η(t))δ ε + g 2 (t). ( 86 
) eqdelta It implies d|δ ε | dt -(∇ u f + ∂ v f ⊗ ∇φ)(η(t))δ ε • δ ε |δ ε | ≤0 = g 2 (t) • sign δ ε . (87) estdelta1
The integration of (87) yields estimate (59).

Proof of Proposition 3

Sec5.3

We set ξ(x) := α -∂Φ ∂v (x, φ(x)) and

U ε = v ε -φ(u ε ) + ε ξ(u ε ) d dt φ(u ε ) -ζ 0 (t/ε) -εζ 1 (t/ε),
where ζ 0 is given by (40) and ζ 1 by (62).

Then, U ε (0) = 0 and |ζ 1 (t)| ≤ Ce -αt . Using (40) and definition of φ we obtain the following equation for

U ε ε d dt U ε = -αv ε + Φ(u ε , v ε ) -ε d dt φ(u ε ) + ε 2 d dt ( d dt φ(u ε ) ξ(u ε ) ) -ε d dt ζ 0 (t/ε) -ε 2 d dt ζ 1 (t/ε) = -αU ε -αφ(u ε ) -αζ 0 (t/ε) -αεζ 1 (t/ε) + ε ∂Φ ∂v (u ε , φ(u ε )) d dt φ(u ε ) ξ(u ε ) +Φ(u ε , v ε ) + ε 2 d dt ( d dt φ(u ε ) ξ(u ε ) ) -ε d dt ζ 0 (t/ε) -ε 2 d dt ζ 1 (t/ε) = -(α -∂ v Φ (1) )U ε + Φ ( u ε , φ(u ε ) - d dt φ(u ε ) ξ(u ε ) ε + ζ 0 (t/ε) + εζ 1 (t/ε) ) -Φ(u ε , φ(u ε )) + Φ(u 0 , φ(u 0 )) -Φ(u 0 , φ(u 0 ) + ζ 0 (t/ε)) +ε 2 d dt ( d dt φ(u ε ) ξ(u ε ) ) + ε ∂ v Φ(u ε , φ(u ε )) ξ(u ε ) d dt φ(u ε ) = -(α -∂ v Φ (1) )U ε + G ε + ε 2 d dt ( 1 ξ(u ε ) d dt φ(u ε ) ) . ( 88 
) caluODE Here, ∂ v Φ (1) := ∂ v Φ(u ε , v (1) ) with v (1) between φ(u ε ) -ε ξ(uε) d dt φ(u ε ) + ζ 0 (t/ε) + εζ 1 (t/ε) and φ(u ε ) -ε ξ(uε) d dt φ(u ε ) + ζ 0 (t/ε) + εζ 1 (t/ε) + U ε . Next, we estimate the term G ε . Φ ( u ε , φ(u ε ) - ε ξ(u ε ) d dt φ(u ε ) + ζ 0 (t/ε) + εζ 1 (t/ε) ) -Φ(u ε , φ(u ε )) +Φ(u 0 , φ(u 0 )) -Φ(u 0 , φ(u 0 ) + ζ 0 (t/ε)) + ε ∂ v Φ(u ε , φ(u ε )) ξ(u ε ) d dt φ(u ε ) = Φ(u 0 , φ(u 0 )) -Φ(u 0 , φ(u 0 ) + ζ 0 (t/ε)) -Φ(u ε , φ(u ε )) +Φ ( u ε , φ(u ε ) + ζ 0 (t/ε) + εζ 1 (t/ε) ) + ∂ vv Φ (2) ε 2 2(ξ ( u ε )) 2 ( d dt φ(u ε ) ) - ( ∂ v Φ ( u ε , φ(u ε ) + ζ 0 (t/ε) + εζ 1 (t/ε) ) -∂ v Φ(u ε , φ(u ε )) ) ε ξ(u ε ) d dt φ(u ε ), (89) caluestim 
where ∂ vv Φ (2) = ∂ vv Φ(u ε , v (2) ) for an appropriate value v (2) .

We start by estimating the two residuals in (89). Due to the boundedness of derivatives of Φ and f (u ε , v ε ), and exponential decay of the initial layers we obtain

( ∂ v Φ ( u ε , φ(u ε ) + ζ 0 (t/ε) + εζ 1 (t/ε) ) -∂ v Φ(u ε , φ(u ε )) ) d dt φ(u ε ) ξ(u ε ) ε + ∂ vv Φ (2) 2(ξ(u ε )) 2 ( d dt φ(u ε ) ) ε 2 ≤ C ( ε 2 + εe -κt/ε ) . ( 90 
) caluestim
Estimating the remaining terms in (89) involves the boundary layers ζ 0 and ζ 1 and the use of the integral remainder for Taylor's formula: 

|Φ ( u ε , φ(u ε ) + ζ 0 (t/ε) + εζ 1 (t/ε) ) -Φ(u ε , φ(u ε )) +Φ(u 0 , φ(u 0 )) -Φ(u 0 , φ(u 0 ) + ζ 0 (t/ε))| = ∫ 1 0 (u ε -u 0 ) • ∇ x Φ ( x, φ(x) + ζ 0 (t/ε) ) x=u 0 +η(uε-u 0 ) dη - ∫ 1 0 (u ε -u 0 ) • ∇ x Φ ( x, φ(x) ) x=u 0 +η(uε-u 0 ) dη + Cεe -κt/ε ≤ t m ∑ i=1 d dt u i ε ∞ ∂ v ∇ x i Φ ( x, φ(x) ) ∞ Ce -κt/ε + Cεe -κt/ε ≤ tCe -κt/ε + Cεe -κt/ε . ( 91 
(A) = Φ(A, φ(A)) yield d dt v ε (t) = α ε -v ε (t) + φ(A(t)) - Φ(A(t), φ(A(t))) α + Φ(u ε (t), v ε (t)) α ≤ C(1 + 1 ε e -M 0 t/ε ). ( 92 
) derivvest Using ∇φ(x) = ∇ u Φ(x, φ(x)) ξ(x)
, we obtain

g 4 (t) := d dt ( 1 ξ(u ε ) d dt φ(u ε ) ) = d dt ( ∇Φ(u ε , φ(u ε )) • f (u ε , v ε ) (ξ(u ε )) 2 ) = ∇ u ( ∇Φ(u ε , φ(u ε )) • f (u ε , v ε ) (ξ(u ε )) 2 ) • f (u ε , v ε ) + ∂ ∂v ( ∇Φ(u ε , φ(u ε )) • f (u ε , v ε ) (ξ(u ε )) 2 ) d dt v ε . ( 93 
) caluestim
Due to the boundedness of derivatives of f and Φ and equation (92) it follows

|g 4 (t)| ≤ C ( 1 + 1 ε e -M 0 t/ε ) . ( 94 
) caluestim
Inserting equations ( 90) and (91) in equation ( 89), and finally equation (89) and estimate (94) in equation (88), we obtain

ε d dt U ε = -(α -∂ v Φ (1) )U ε + g 5 (t) (95) with |g 5 (t)| ≤ C(ε 2 + (ε + t)e -κt/ε ).
We obtain

d dt δε = f ( A + εu 1 + εψ 1 (t/ε) + δε , U ε +φ(A(t) + εu 1 (t) + εψ 1 (t/ε) + δε ) -ε ∇φ(u ε ) • f (u ε , v ε ) ξ(u ε ) +ε ∇φ(A) • d dt A ξ(A) -ε ∇φ(A) • d dt A ξ(A) + ζ 0 (t/ε) + εζ 1 (t/ε) ) - d dt u 1 ε -ε d dt ψ 1 (t/ε) -f (A, φ(A)) = f ( A + εu 1 , -ε ∇φ(A) • d dt A ξ(A) + ζ 0 (t/ε) + φ(A + εu 1 ) ) +D u f * (εψ 1 (t/ε) + δε ) - d dt u 1 ε -ε d dt ψ 1 (t/ε) -f (A, φ(A)) +∂ v f * ( U ε -ε ∇φ(u ε ) • f (u ε , v ε ) ξ(u ε ) + ε ∇φ(A) • d dt A ξ(A) + εζ 1 (t/ε) ) , ( 103 
)
deltau2OD
where ∂ v f * = ∂ v f (u ε , v * ) for an appropriate value v * and

D u f * = ∇ u f ( x, φ(x) - ε ξ(A) ∇φ(A) • d dt A + ζ 0 (t/ε) ) x=u * +∂ v f ( x, φ(x) - ε ξ(A) ∇φ(A) • d dt A + ζ 0 (t/ε) ) ⊗ ∇φ(x) x=u *
for an appropriate value u * between u ε and A + εu 1 .

The perturbation ε ξ(A)

∇φ(A)• d dt A+ζ 0 (t/ε) tends to zero for ε tending to zero and t ≥ O [START_REF] Agarwal | An Introduction to Ordinary Differential Equations[END_REF].

Therefore, D u f * satisfies the exponential dichotomy from Assumption 5. Now we estimate the last term in (103): ) 

U ε -ε ∇φ(u ε ) • f (u ε , v ε ) ξ(u ε ) + ε ∇φ(A) • d dt A ξ(A) = U ε -ε ∇φ(u ε ) • f (u ε , v ε ) ξ(u ε ) + ( ∇φ(A) • f (A, φ(A)) ξ(A) - ∇φ(u ε ) • f (u ε , φ(u ε )) ξ(u ε ) ) ε + ∇φ(u ε ) • f (u ε , φ(u ε )) ξ(u ε ) ε = Ûε + ( ∇φ(A) • f (A, φ(A)) ξ(A) - ∇φ(u ε ) • f (u ε , φ(u ε )) ξ(u ε ) ) ε (104) remainder with Ûε := U ε -ε ∇φ(u ε ) ξ(u ε ) • (f (u ε , v ε ) -f (u ε , φ(u ε ))). ( 105 
+ D u f * δε - d dt u 1 ε -ε d dt ψ 1 (t/ε) -f (A, φ(A)) + ∂ v f * Ûε,2 + ε(G 1 + G 2 ). ( 110 
) -f (A, φ(A)) + D u f * δε + [ D u f A u 1 -∂ v f A ∇φ(A) • d dt A ξ(A) ε - d dt u 1 ] ε -ε d dt ψ 1 (t/ε) + ∂ v f * Ûε,2 + ε(G 5 + G 6 ) ( 

  ) DecayEta where C and κ are positive constants. Consequently v 0 (τ ) = φ(A) + O(e -κτ ).
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 10 112) deltau2OD with ||G 5 || L ∞ (R + ) ≤ Cε and |G 6 (t)| ≤ Ce -M 0 t/ε .Finally, insertion of equations (101) and (100) into (112) leads tod dt δε = f ( A, ζ 0 (t/ε) + φ(A) ) -f (A, φ(A)) + D u f * δε -f (u 0 , φ(u 0 ) + ζ 0 (t/ε)) + f (u 0 , φ(u 0 )) + ε(G 5 + G 6 ) + ∂ v f * Ûε,2 . (113) deltau2ODA precise Taylor estimate results in||f (A, ζ 0 (t/ε) + φ(A)) -f (A, φ(A)) -f (u 0 , φ(u 0 ) + ζ 0 (t/ε)) + f (u 0 , φ(u 0 ))|| ∞ = ∫ ∇ u f (u, φ(u) + ζ 0 (t/ε)) | u=u 0 +ν(A-u 0 ) -D u f (u, φ(u)) | u=u 0 +ν(A-u 0 ) ) (A -u 0 )dν ∞ ≤ C max{ε 2 , te -M 0 t/ε } d dt A ∞ ∥∂ v D u f (u, φ(u) + v)∥ ∞ =: G 7 max{ε 2 , te -M 0 t/ε }. (114) estIn the final step we use estimate (114) and the exponential dichotomy for D u , to obtain the inequality| δε | ≤ ∫ t 0 e -M (t-τ ) (|εG 5 (τ ) + εG 6 (τ ) + ∂ v f * Ûε,2 | + τ e -M 0 τ /ε G 7 ) dτ ≤ Cε 2 + C|| Ûε,2 || L 1 (R + ) ≤ Cε 2 . (115)

  ) caluestim

	It remains to estimate the term ε 2 d dt	(	1 ξ(uε)	) dt φ(u ε ) d	in (88). We start by the estimate for

d dt v ε . Theorem 1 and the equation αφ

  ) calutilde Since | Ûε | ≤U ε + εC|V ε + ζ 0 (t/ε)|, || L ∞ (R + ) ≤ Cε 2 , || Ûε,2 || L 1 (R + ) ≤ Cε 2 .

								(106)
	using a similar argument as in (97), we obtain
					Ûε =: Ûε,1 + Ûε,2	(107) calutilde
	with						
				|| Ûε,1 (108)
	Next, Theorem 1 implies			
		(	∇φ(A) • f (A, φ(A)) ξ(A)	-	∇φ(u ε ) • f (u ε , φ(u ε )) ξ(u ε )	)	≤ Cε.	(109) remainder
	Insertion of (109) and (107) into (104) and insertion of (104) into equation (103) yield
	d dt	δε = f	( A + εu 1 , -ε	∇φ(A) • d dt A ξ(A)	+ ζ

0 (t/ε) + φ(A + εu 1 )
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th2 Theorem 2 Let Assumptions 2-5 be satisfied. For ε small enough it holds

where A RG fulfills the 1st order RG equation

Proof. First we observe that

Since εψ 1 ( t ε ) decays exponentially, it is enough to estimate the error function d ε : = A RG -A -εu 1 . Using the ODEs for A RG , A and εu 1 , we obtain

where G * is bounded. Error estimate (i) now follows directly.

In order to prove (ii), we use Proposition 3 and the estimate (i).

Example of an application in biology

Sec3

We consider the following system of ordinary differential equations

where p, k, d are positive constants, a ∈ (0.5, 1) and u 0 1 , u 0 2 , v 0 are positive. This system describes time evolution of a cell system maintained by a stem cell population that differentiates to mature cells, e.g., blood cells [START_REF] Marciniak-Czochra | Modeling asymmetric cell division in hematopietic stem cells regulation of self-renewal is essential for efficient repopulation[END_REF], [START_REF] Stiehl | Characterization of stem cells using mathematical models of multistage cell lineages[END_REF]. Then v ε is interpreted as the concentration of signaling molecules and u ε,1 , u ε,2 as counts of stem and committed cells. The existence of (locally) stable positive equilibria and the dynamics in the neighborhood of such equilibria are of biological interest [START_REF] Nakata | Stability analysis of multicompartment models for cell production systems[END_REF], [START_REF] Stiehl | Characterization of stem cells using mathematical models of multistage cell lineages[END_REF]. The 0th-order RG approximation ("quasi steady state approximation") of this model Using the explicit formula for U ε and Young's inequality yields

where

(97) mathcalUs

Proof of Proposition 4

Sec5.4

As above, we set ξ(x) := α -∂Φ ∂v (x, φ(x)). Adopting the notations from Proposition 3, we obtain

In order to obtain an O(ε 2 ) approximation, we expand u ε as

Then it is required that u 1 (0) + ψ 1 (0) = 0. We obtain Note that according to Assumptions 3 and 5 u 1 is bounded. We now estimate the approximation error δε (t) = u ε (t) -A(t) -εu 1 (t) -εψ 1 (t/ε).

(102) deltaudef