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Abstract. We review some theoretical and experimental works describing the slow,

thermally activated, growth of a crack in a solid material under stress. Theoretical

approaches fall into two main classes: creep crack growth models and elastic trap

models. On one hand, creep crack growth models describe the viscoplastic flow of

matter until some characteristic rupture strain is reached. This first category of models

applies especially to the case of polymer rupture. On the other hand, elastic trap

models assume that a rupture energy barrier is overcome by elastic stress fluctuations.

While this second category of models is more restricted since it applies only to materials

with brittle rupture features, it offers a framework that can be interestingly and

importantly extended to the case of heterogeneous materials. Models will be discussed

in the light of recent experimental works.

PACS numbers: 62.20.Mk,46.50.+a,46.35+z
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1. Introduction

Understanding strength of solids has always been an important concern in order to be

able to design properly structures of various kind (buildings, vehicles, ships, airplanes,

etc.). Experimentally, the strength of solids is usually found much lower than would

predict a theoretical estimate assuming rupture of covalent bonds. Griffith described

how the presence of flaws in a material and the corresponding stress inhomogeneities

resulting from it could explain a significant decrease in strength [1]. It is also well-

known that strength of solids depends on the volume of the specimen, the strength

becoming smaller in larger samples. This property has been mainly described as a

statistical effect in a distribution of flaws using the weakest link concept, originally

introduced by Pierce [2] and developed into a theory by Weibull [3]. This theory,

mathematically connected to the problem of extreme-value statistics [4], has helped

to understand how strength of wires depend on their diameter or their length, and

explains why, nowadays, very small objects such as nanotubes or nanowires have often a

very high strength. However, another well-known observation, that can not be described

by Weibull’s statistical theory, is the time-dependence of strength of solids, namely the

fact that materials will break at smaller loads when the duration over which the load is

applied becomes longer [5]. It has been recognized since at least the early 1940s’ that the

decrease in strength with time was due to rupture processes that are thermally activated

[6]. Several models involving a thermally-activated mechanism have been proposed to

explain the experimental observations. Nowadays, there are still many unanswered

questions on the proper way to describe slow rupture, alternatively called subcritical

rupture or time-dependent rupture.

The present paper intends to review historical and also more recent works on time-

dependent rupture with a focus on slow crack growth dynamics in the second half of

the paper. Section 2 will first discuss various laws for the breaking time of a material

under a constant applied load. We will see that many different kinds of materials can be

described according to a simple phenomenological law. We will discuss the limits of this

phenomenological law, in particular the scale at which rupture is supposed to occur and

the precise dependence with the applied stress. We will also review various theoretical

models that have been proposed in order to predict the experimental observations on the

breaking time. Section 3 will discuss several models that can be used to predict slow

crack growth dynamics under a constant load. We will concentrate on two models

describing the case of brittle materials, and compare their predictions with recent

experimental results. We will also discuss briefly the case of viscoplastic materials for

which predictions are more difficult to make and often rely on very phenomenological

descriptions of the material mechanical properties.
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2. Breaking time of materials under a constant load

2.1. Early experiments and the BBZ model

Time-dependent rupture, subcritical rupture, or more simply put, slow rupture has

been very early described as a consequence of creep flow. Maybe the first historical

evidence for such a possible connection between creep flow and slow rupture was made

around 1830 by Vicat [5], a bridge construction engineer who studied the creep of iron

wires under different loads. Vicat discovered that, even though corrosion of the wire

by the atmosphere was prevented with the use of drying oil, wires that were submitted

to the largest loads would eventually break after some time, which meant in Vicat’s

experiments about three years!

A century after Vicat, Busse [6], a tire engineer, studied the slow rupture properties

of cotton yarns, i. e. bundles of cotton fibers. He found that the breaking time τ

decreases exponentially with the applied stress σ and he inferred from his observations

on various yarn lengths that this behaviour was due to viscoplastic flow of individual

fibers, but neither slippage of the fibers between each other nor chemical degradation.

Busse proposed that the inverse of the breaking time should be proportional to the

viscous strain-rate predicted by Eyring’s reaction-rate theory of viscous flow [7]:

τ−1 ∼ τ−1
0 exp

(

−E0

kBT

)

sinh

(

σV

kBT

)

(1)

where kB is Boltzmann constant, T the thermodynamic temperature, E0 a characteristic

energy barrier and V an activation volume. In Eyring’s theory, the activation volume

is half the average volume occupied by a molecule. The sinh term in equation (1)

comes from the fact molecules have a thermally activated probability proportional to

exp(σV/kBT ) to jump a unit distance in the direction of the flow but also a small

probability proportional to exp(−σV/kBT ) to jump in the opposite direction. When

the applied stress σ is large enough so that σV ≫ kBT , the probability to move backward

is very small. In such a case, the rupture process is irreversible and the rupture time

takes a simpler form:

τ = τ0 exp

(

E0 − σV

kBT

)

(2)

Busse found equation (2) to be in qualitative agreement with his experimental

observations. Shortly afterwards, Tobolsky and Eyring [8] calculated the rupture time

of a fiber bundle submitted to a constant force, taking into account the progressive

increase of the load on the remaining fibers. They found that, in the limit where

σV ≫ kBT , it added only logarithmic corrections to equation (2). Along the same line,

Coleman described how knowledge of the statistical distribution of breaking times under

a constant load could be used to predict breaking times for other load histories (linear

increase in time or sinusoidal) [9]. In particular, the stain-rate dependence observed for

the strength of some materials (polymers, rocks) can be understood as a consequence

of the thermally activated behaviour predicted by equation (2) [10, 11].
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Bueche, who was specifically interested in thermally activated rupture of polymer

chains, observed for glassy polymers, i.e. at temperatures below the glass transition, an

exponential dependence of the rupture time with applied force [12]. He derived a model

where rupture occurs in a polymer chain when bonds are pulled apart up to a critical

distance δ that is expected to be a fraction of an interatomic distance. He also assumed

that applying a constant force F to a bond decrease the rupture energy barrier E to

be overcome by thermal activation such that E = E0 − Fδ, where E0 represents now

the bond energy. Finally, he suggested that the characteristic frequency τ−1
0 should be

of the order of the bond vibration frequency. Finally, Bueche’s prediction can be put

exactly in the same form as equation (2) writing the activation volume: V = A0δ, where

A0 is the typical cross-sectional area per monomer through the rupture plane.

Zhurkov’s kinetic theory of rupture [13] contains the same ideas than Bueche’s

theory. Zhurkov has verified experimentally for a wide range of temperatures that

the scaling law equation (2) works reasonably well for many different materials

(polycrystalline metals, alloys, non-metallic crystals, polymers). He compared the

experimental value of the energy barrier E0 with the sublimation energy and found they

were close. His numerous observations came in support of the idea that time-dependent

rupture results from thermally activated bound cut. In the case of polymers, Zhurkov

found more direct evidence of bond rupture by measuring the rate of radical formation

using EPR (Electron Paramagnetic Resonance) and showed it had the same qualitative

and quantitative dependence on applied stress than the inverse of the rupture time.

Even though Busse, Bueche and Zhurkov have different physical arguments to

justify their models (viscous flow, bond rupture), they all have in common that

they predict the same dependence of the time-to-rupture on the applied stress. For

convenience, we shall refer to equation (2) as the BBZ model.

2.2. Problems with the BBZ model

2.2.1. The scale of rupture. Although the simplicity of the BBZ model and the theories

proposed to justify it are rather appealing, some difficulties arise when looking at the

scale at which the rupture process occurs according to the models. In Table 1, we

have reported or estimated the energy scale and the activation volume extracted from

several experiments published in the literature. While it seems true that E0 is of the

order of magnitude of an atomic bond energy, we see right away that the length scale

associated to the activation volume is consistently of the order of a few nanometres.

This means that the thermally-activated rupture process described by the BBZ model

should involve several hundred atomic bounds simultaneously. If one tries to estimate

the critical distance δ in Bueche’s model with a typical value of the cross-sectional area

per monomer A0 = 70Å2, one still finds δ ∼ 1nm which can clearly not be interpreted

as a critical atomic bond distance for rupture. Bueche was aware of this problem and

tried, unsuccessfully, to correct his model by taking into account several possible effects,

such as the progressive increase of load on polymer chains due to viscous relaxation of
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T (◦K) V 1/3 (nm) E0 (eV)

Cotton yarns [6] 411 1.2 1.79

Nylon yarn [9] 296 2.56 0.9

PEMA [12] 375 0.95 ∅

Polystyrene [12] 393 0.98 ∅

Polystyrene [16] 293 1.4 1.56

PMMA [13] 291 1.1 2.74

Zn - polycrist [13] 291 - 523 1.03 1.31

Al - polycrist [13] 291 - 573 1.65 2.29

Granite [10] ∼ 300 2.4 1.9

Table 1. Characteristic energy E0 and volume V estimated for various experimental

data found in the literature using the BBZ model. E0 is computed assuming

τ0 = 10−13s as discussed in [13].

the load on other chains [14].

2.2.2. The limit of long rupture times. Another serious limitation of the BBZ model

are the deviations from the linear dependence of log(τ) with applied stress σ observed

in many cases. For instance, both Bueche and Zhurkov have observed that at very low

stresses or high temperatures, the rupture time is much longer than expected by simply

extrapolating the behaviour at high stress or low temperatures. Note also that in the

case of rubbery polymers, i.e. polymers at temperatures above the glass transition,

the deviations can be especially large [15]. Bueche argued that, in the long rupture

time regime, glassy polymers tend to behave like rubbery polymers for which he had

made specific predictions based on a non-standard model of rubbery elasticity, but the

agreement he found with experimental data remained qualitatively and quantitatively

unsatisfying.

Zhurkov suggested that the deviations might arise from the reversibility of the

rupture process at small applied stress [13], with the probability for an atomic bound to

heal becoming equal to the probability to break at zero stress. Such a reversible process

is actually naturally included in the non-approximated version of the BBZ model given

by equation (1) which predicts, in the limit of small applied stresses, τ ∝ σ−1. Following

the idea that rupture is a reversible process, Kausch et al [17] have studied a fiber bundle

model where the rate of bond rupture and bond healing is given by Eyring reaction-

rate theory. Their model takes into account the progressive rupture of bonds, the

corresponding increase of the load shared equally by the remaining bonds and assumes

that the bonds break when a critical load is reached. The model is able to reproduce

the divergence of rupture time at small stresses. However, in order to fit experimental

data, Kausch et al chose, without any physical justifications, a time scale τ0, an energy

scale E0 and an activation volume V that were different for bond rupture and for bond

healing [17]. In practice, the activation volume for bond healing was found to be 10 to
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30 times smaller than the activation volume for bond rupture and the elementary rate

of bound rupture 20 to 2000 times the elementary rate of bound healing. Note that,

as seen in the previous paragraph, the order of magnitude of the activation volume for

bond rupture was still about (1 − 2 nm)3.

2.3. Elastic energy barrier models

A completely different explanation for the deviations from the BBZ model observed

experimentally could be that the linear decrease of the energy barrier with the applied

stress σ, assumed in Eyring reaction-rate theory, is simply not the correct functional

dependence, even at large stresses. Several alternative scaling relations between the

breaking time and the applied stress have been proposed in the case of purely elastic

materials.

2.3.1. Taylor’s model. In order to explain early experiments on time-dependent rupture

in glass by Baker et al [18], Glathart and Preston have suggested the following empirical

fit of their data [19]:

τ = τ0 exp
(σ0

σ

)

(3)

In order to justify this empirical scaling, Taylor introduced shortly afterwards a model

where a perfectly elastic material breaks when it reaches a critical elongation. Although

the physical justifications behind Taylor’s model are quite unclear, his core assumption

is that the volume of material involved in the calculation of the energy barrier decreases

proportionally to the inverse of the applied stress [20]. In the specific case of glass,

Baker et al have shown that in addition to temperature, the atmosphere conditions

(humidity) had a strong influence on the rupture dynamics (this behaviour has been

studied extensively later by Wiederhorn [21], see also [22] for a recent review). This

rupture regime, called stress-corrosion, comes from the fact the energy barrier for bond

rupture in silicate glass involves a chemical reaction with water molecules and thus

depends on the specific amount of humidity in the environment. Such effects involving

a chemical reaction and the detailed change in the energy barrier related to it are out

of the scope of the present review.

2.3.2. Global energy balance (GEB) models. More recently, Pomeau [23, 24] has

determined the breaking time of materials under a constant load by assuming it comes

from the nucleation of a critical crack with a size determined according to Griffith’s

rupture criterium [1]. Indeed, Griffith idea of energy balance between the energy required

to create a crack surface and the total mechanical energy (elastic + potential energy

of the external load) predicts that a solid stretched at constant load is in a metastable

state. The energy barrier to overcome is then the one corresponding to the nucleation

of a critical crack. This approach assumes that the material response is elastic up to the

rupture point, a case which is usually referred to as brittle rupture. For a 2d geometry,
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i. e. a plane of small thickness e, the nucleation of a critical Griffith crack across the

plane will take a time:

τ = τ0 exp

(

σ2
0

σ2

)

(4)

where σ2
0 ∼ γ2Y e/kBT , Y is the Young modulus and γ is the energy needed to create a

unit surface of the crack. For a 3d geometry, where the nucleated crack can be thought

in first approximation as a spherical cavity, the breaking time is predicted to be:

τ = τ0 exp

(

σ4
0

σ4

)

(5)

where σ4
0 ∼ γ3Y 2/kBT . Note that if one considers in 3d the nucleation of a crack

corresponding to a straight needle cut of atomic diameter, one could expect to get a

scaling with applied stress corresponding to the case of the 2d geometry where the

thickness of the crack e is of the order of magnitude of an atomic size. Some authors

have shown that the breaking time keep the same dependence on applied stress if one

includes the effect of curviness of the crack [25]. The case where a crack pre-exists in

the material changes slightly the energy barrier and has been expressed both for the 2d

and 3d geometry [26, 27].

In the last 15 years, several experimental works have tried to verify Pomeau’s

prediction. Experiments in 2d rods of NBD stearic acids [28] seem to agree with the

2d prediction of equation (4) while experiments in wood composites [29], fiber glass

composites [30] or sintered glass beads [31] agree better with the 3d prediction of

equation (5). Some authors even generalized Pomeau’s prediction to fractal dimensions

arguing it corresponds to the case of gels [32]. However, note that from the experimental

values of σ0, Y and T , obtained for instance in [30], one would find using a fit

with equation (5) a value γ ∼ µJ.m−2 [27]. This is an abnormally low value for the

fracture energy suggesting that the energy barrier in equation (5) has been strongly

overestimated.

One of the main fallout of Pomeau’s model [23] and derivatives is that they neglect

the possibility that rupture results from the accumulation of small irreversible rupture

events in the material that would require a much lower energy barrier. Indeed, according

to Pomeau’s initial idea, a crack is supposed to reversibly explore due to thermal noise

several sizes until it reaches the critical one. This might be relevant in the case of

very large loads for which the critical crack size, and thus the energy barrier, is very

small, but it will not in general describe properly the practical case of materials that

can have rather large preexisting flaws that will not be able to close back in a reversible

manner. Golubovic et al [33] have suggested that irreversibility of the rupture process

arises as soon as the distance between the two crack lips is larger than an atomic size.

Following this idea, they defined a critical crack size as the crack for which the maximum

opening is larger than an atomic size. Their prediction yields a change in the stress

dependence of the energy barrier such that, in a 2d geometry, the rupture time takes

the form corresponding to equation (3) while in 3d, it takes the form of equation (4).
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Note that this approach neglects the time it takes afterwards for the crack to grow until

it reaches the Griffith length. In order to predict what would happen in that case, the

energy barrier corresponding to the progressive growth of a crack has been expressed by

Santucci et al [26] assuming that, due to irreversibility, the Griffith potential could be

progressively climbed in elementary steps δ, possibly of atomic size, up to the Griffith

critical crack size. For a 2d geometry, this will give an energy barrier per unit thickness:

E = (Gc − G)δ (6)

where Gc = 2γ is the critical elastic energy release rate corresponding to Griffith rupture

criteria and G the elastic release rate corresponding to the actual crack length‡, assumed

here smaller than the Griffith critical size (G < Gc).

Another way to go around the problem of oversized barriers in Pomeau’s model is

to take into account the effect of disorder (or heterogeneity) in the material properties.

For instance, in order to explain their experimental observations, Guarino et al [29]

introduced the idea that the disordered nature of the samples could result in an effective

temperature at least an order of magnitude higher than the thermodynamic temperature

T . This idea has been mainly discussed in the context of local elastic barrier models

(see paragraph 2.3.3). In the context of Global Energy Balance Models, Nattermann et

al have shown how disorder could decrease the energy barrier and thus the critical crack

size for rupture [34]. However, relying also on global energy balance models, Kierfeld et

al [35, 36] have recently shown that, for a single crack, disorder might instead have the

effect to slow down rupture and even cause the complete arrest of the crack (see also

[37], for a similar prediction in the context of local elastic barrier models).

2.3.3. Local elastic barrier (LEB) models. In order to explain slow rupture at high

temperature of sapphire whiskers, Brenner [38] took into account a preexisting crack

and proposed that the energy barrier to overcome should correspond to the elastic

energy increment needed to reach in a small volume near the crack tip a local rupture

threshold. Brenner predicted that the rate of rupture p at the crack tip should have the

following form:

p ∝ exp

(

−(σc − σm)2V

2Y kBT

)

(7)

where σc is the local value of the rupture stress and σm the mean stress in volume

V . In order to understand Brenner’s formula, let us consider for an elastic material

the temporal stress fluctuations σf that occur around the statistical mean value σm in

a given fixed volume V . Statistical physics predicts that these fluctuations follow a

normal distribution:

p(σf) =

√

V

2πY kBT
exp

[

−(σf − σm)2V

2Y kBT

]

(8)

‡ The elastic energy release rate is defined by the relation G = −∂Um/∂A, with Um the sum of the

elastic energy and the potential energy of the external loading, and A the fracture surface area.
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The probability to break, i.e. to have a fluctuation larger than the breaking threshold,

is then: P (σc−σm) =
∫

∞

σc

p(σf )dσf = 1

2
erfc[(σc−σm)

√

V/2Y kBT ]. If the energy barrier

is large compared to the energy of thermal noise, i. e. if (σc − σm)2V ≫ 2Y kBT , then

it is possible to show that the volume V will break after a time:

τ = τ0

√

2πV

Y kBT
(σc − σm) exp

[

(σc − σm)2V

2Y kBT

]

(9)

Equation (9) indeed shows that the rate of rupture (∝ τ−1) is dominated by the same

exponential term as the one proposed by Brenner. Thanks to the local nature of the

rupture process, the local energy barrier models have been very useful to describe

thermally activated rupture in elastic disordered materials [37, 39, 40, 41, 42, 43, 44].

3. Slow crack growth under a constant load

The predictions of time to rupture presented in section 2 very often ignore the fact that

rupture is usually a gradual process, involving many elementary rupture events. Two

main scenarios of progressive rupture are often referred to: in the first one, the material

break after the accumulation of many diffuse rupture events; in the second one, there is

a main defect, a main crack, that will grow slowly until reaching a critical size. In this

second part of the paper, we will be discussing mainly the slow growth of a crack. As we

have seen previously, there is some uncertainty regarding the precise dependence of the

energy barrier with the applied stress. Looking at the detailed dynamics of slow crack

growth under constant stress can, in principle, help to discriminate between the various

predictions. Indeed, under a constant load, the stress intensity factor will increase as the

crack grows and the crack will accelerate. But, the acceleration of the crack will depend

on the precise functional form of the energy barrier so that the crack length evolution

with time will have different shapes for various models of the energy barrier. In addition,

one might wonder if the experimental values of the activation volume, observed to be

larger than expected for a model of bound rupture at the atomic scale, might be due to

the failure of properly describing the progressive damage processes leading to rupture.

In the following, we review some predictions made by models of brittle rupture where

the material is assumed to be elastic up to the rupture point. Afterwards, we discuss

the case of viscoplastic rupture for which predictions are more difficult to make and

often rely on very phenomenological descriptions of the material mechanical properties.

3.1. Brittle materials

3.1.1. Slow crack growth in the GEB model: lattice trapping. Brittle materials are

assumed to behave elastically up to the rupture point. For elastic materials, the Griffith

energy balance approach predicts that, under a constant load σ, there exists a critical

crack length ℓg corresponding to an unstable equilibrium point that verifies exactly the

condition: G = Γ where G is the elastic energy release rate and Γ = 2γ the energy

cost per unit area to create two fracture interfaces. Note that G is here an increasing
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ℓℓ+ℓgℓ−

U(ℓ)

Metastable region

U
n
st

a
b
le

U
n
st

a
b
le

Figure 1. Thomson potential energy as a function of crack length ℓ and for a constant

applied stress σ. For ℓ− < ℓ < ℓ+, the crack can be trapped in metastable states, while

for ℓ < ℓ− and ℓ > ℓ+ it is always unstable. The Griffith length ℓg corresponds to a case

where statistically the crack has the same probability to move forward or backward.

function of the crack length ℓ. If rupture is a reversible process and the crack length is

such that ℓ < ℓg (equivalently G < Γ), the crack will be unstable and close back entirely.

On the other hand, if the crack length ℓ is such that ℓ > ℓg (equivalently G > Γ), the

crack will also be unstable and grow indefinitely. In order to explain the existence of

stable cracks under a tensile load at zero temperature and their slow growth at finite

temperature, Thomson et al have developed a lattice theory where the crack is trapped

due to the discreteness of matter at the atomic scale δ [49]. The model assumes that

this discreteness introduces a frozen spatial modulation of the fracture energy, with a

minimum value Γ− < 2γ and a maximum value Γ+ > 2γ. When Γ− < G < Γ+, the

crack will be in a metastable state due to what Thomson et al have called a lattice

trapping effect. At constant load, there will exist a length ℓ− < ℓg and a length

ℓ+ > ℓg between which the crack can move only by thermally activated jumps over

energy barriers (see figure 1). As shown below, the resulting motion will be either a

slow growth or a slow healing of the crack depending on the value of the crack length.

For ℓ > ℓ+ (resp. ℓ < ℓ−), the trapping barrier becomes zero and the crack can grow

(resp. heal) quickly. That the trapping model explains the existence of a lower threshold

for a crack to be able to start growing and also an upper threshold above which the

crack becomes mechanically unstable has made this model realistic and thus attractive

[50, 51, 52, 53, 54, 55, 56, 57]. Linearizing the trapping energy barrier, in the same spirit

as done originally by Hsieh et al [50], we can write the energy barrier to move a discrete

step δs forward E+ and the energy barrier to move a discrete step δs backward E−:

E+ = (Γ+ − G)δs and E− = (G − Γ−)δs (10)

Note that the expression for E+ is very similar to equation (6), except that the threshold

Γ+ is now larger than the Griffith one 2γ. Also, in equation (10), the energy E+ and
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E− have been written per unit width of the crack front. If the crack front were to move

at once, the energy barriers E+ and E− would have to be multiplied by the width of

the crack front to get the actual energy barrier of the rupture process. Realizing that

this was not very realistic since it would lead to very large energy barriers when the

crack front is of macroscopic size, Hsieh et al [50] had originally suggested that the

crack could advance by forming a small kink at the atomic scale and that afterwards

the kink would propagate along the width of the crack front. With a kink mechanism,

the energy barrier of the process can be roughly obtained by multiplying the energy

barriers in equation (10) by a scale δk of the order of a few atomic sizes. The kink

propagation mechanism itself has been described in detail by Marder [56]. Assuming

that the healing of the crack is possible, the crack velocity can be written:

v ≡ dℓ

dt
= v0 exp

[

−E+δk

kBT

]

− v0 exp

[

−E−δk

kBT

]

(11)

which can be rearranged so that:

v = 2v0 exp

[

−∆Γδsδk

kBT

]

sinh

[

(G − Γ0)δsδk

kBT

]

(12)

where:

∆Γ =
Γ+ − Γ−

2
and Γ0 =

Γ+ + Γ−

2
(13)

The quantity Γ0 represents the average value of the fracture energy, and when there is no

lattice trapping (Γ+ = Γ−), the usual Griffith condition gives G = Γ0. In equation (12),

one notices that the crack velocity is zero when G = Γ0, hence when the crack verifies

Griffith condition for the mean value of the fracture energy. It is important to realize

that while Γ0 gives a threshold for crack propagation, it does not give a threshold for

spontaneous healing which will occur only when G < Γ−(< Γ0). Spontaneous fracture

will on the other hand occur only when G > Γ+(> Γ0). Note that in order to observe

spontaneous healing in the lattice trapping model, one will have to decrease G below

Γ0 by the same amount we would need to increase G above Γ0 to observe spontaneous

crack growth. If a thermally activated rupture process is allowed, slow healing of the

crack will occur when Γ− < G < Γ0 and slow crack growth when Γ0 < G < Γ+.

In practice, slow crack growth will be observed in a reasonable amount of time if

(G − Γ0)δsδk ≫ kBT . In that case, eq. (12) reduces to:

v = v0 exp

[

(G − Γ+)δsδk

kBT

]

(14)

One can apply equation (14) to determine the velocity of a crack of length ℓ centred in

a plane sheet under a constant tensile stress σ perpendicular to the crack direction.

In that case, G = K2/E = πσ2ℓ/2Y , where K = σ
√

πℓ/2 is the mode I stress

intensity factor. The upper limit of the fracture energy Γ+ can be used to define a

critical crack size ℓc ≡ ℓ+ and a critical stress intensity factor Kc through the relation:

Γ+ = K2
c /E = πσ2ℓ+/2Y . Then, one can write the velocity:

v = v0 exp

[

−(K2
c − K2)δsδk

Y kBT

]

= v0 exp

[

−πσ2(ℓc − ℓ)δsδk

2Y kBT

]

(15)
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Note that this velocity increases exponentially with the crack length. Equation (15) is

a differential equation that can be solved to find ℓ(t) with the initial condition that at

t = 0, ℓ = ℓi:

t = τG

[

1 − exp

(

−ℓ − ℓi

ζG

)]

(16)

where we have introduce the characteristic length scale ζG:

ζG =
2Y kBT

πσ2δsδk

(17)

and the characteristic time τG:

τG =
ζG

v0

exp

[

UG

kBT

]

(18)

with:

UG =
(K2

c − K2
i )δsδk

Y kBT
=

πσ2(ℓc − ℓi)δsδk

2Y kBT
(19)

Derivating again the solution with respect to time, one can write:

v =
ζG

τG − t
(20)

It is clear from the last formula that τG will represent the rupture time of the sample

while, as can be seen from equation (16), ζG sets a typical growth length before the crack

length starts to diverge. We will compare these predictions with experimental results

in paragraph 3.1.3.

3.1.2. Slow crack growth in the LEB model. In paragraph 2.3.3, we have introduced

the LEB model which corresponds to a description where an intrinsic rupture threshold

exists at a local scale. We insist that this rupture threshold does not come from a Griffith

rupture criteria or from any global energy balance reasoning. In the LEB model, the

stress at the crack tip is assumed to have a finite value and if this value is smaller than

a rupture threshold σc, the crack will be effectively trapped. Contrary to what has been

discussed previously, there is no need at this point to introduce a discretization at the

atomic scale in order to create a trap. There are many possible reasons why, in an elastic

material, one can expect to have a finite value of the stress at the crack tip. It will occur

for instance if the crack tip has a well-defined radius of curvature. Alternatively, there

might exist some cut-off length, related to the microstructure of the material, below

which the stress can not diverge. Finally, in the spirit of Barenblatt, there might exist a

cohesive zone of small fixed size that will prevent divergence of the stress [58] (the same

calculation was also derived in a different context by Dugdale [59]). In any case, we will

introduce a characteristic size λ so that the stress at the crack tip can be written:

σm =
K√
λ

where K = σ

√

π

2
ℓ (21)

Now, the scale d at which thermally activated rupture occurs has nothing to do with the

scale λ that acts as a cut-off for the stress divergence. Remember for instance that, in
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the BBZ model, the rupture scale was about a nanometre (see table 1), and we expect a

similar order of magnitude in the LEB model. The time τ to rupture a volume V = d3

at the end of each crack tip is known from eq. (9). The crack velocity can be defined as:

v ≡ 2d

τ
= v0

√

2Y kBT

π(σc − σm)2V
exp

[

−(σc − σm)2V

2Y kBT

]

(22)

where we set v0 = d/τ0. This differential equation is not as easy to solve as equation (15).

However it is possible to solve an approximate version of this equation valid as long as

the critical crack size ℓc is not too large compared to the initial crack size ℓi [26, 46].

With the initial condition that at t = 0, ℓ = ℓi and defining σi = σm(ℓi), the solution

ℓ(t) of equation (22) can be expressed as:

t = τL

[

1 − exp

(

−ℓ − ℓi

ζL

)]

(23)

where we have introduced the characteristic length scale ζL:

ζL =
2Y kBTℓi

σi(σc − σi)V
=

4πY kBTℓi

Ki(Kc − Ki)

λ

V
(24)

and the characteristic time τL:

τL =
ζL

v0

√

πUL

kBT
exp

[

UL

kBT

]

(25)

with:

UL =
(σc − σi)

2V

2Y
=

(Kc − Ki)
2V

2Y λ
=

πσ2(
√

ℓc −
√

ℓi)
2V

4Y λ
(26)

The prediction of the crack growth dynamics given by equation (23) is qualitatively

the same than the one obtained with the GEB model. However, the characteristic

length ζL, rupture time τL and energy barrier UL have a different dependence on the

physical parameters. In the next paragraph, we will compare both the LEB and GEB

model predictions with experimental observations. The detailed statistics of crack jumps

that are observed in these experiments and that can be successfully understood in the

framework of the LEB model [60] will not be discussed here (for a review, see [46]).

3.1.3. An experimental test of the GEB and LEB models. We will now compare the

predictions of both the GEB and LEB models with the experiments of Santucci et

al [45, 46] on slow crack growth in a sheet of paper under a constant applied load.

In addition to measuring the rupture time, Santucci et al have measured the crack

length as a function of time and after averaging over several experiments in the same

conditions, they have determined the characteristic growth length ζ using a fit with

equation (16) or equivalently, equation (23) [45, 46]. In figure 2 (a) and 2 (b), we compare

the experimental values of ζ with the predicted values ζG.(δsδk) and ζL.(V/λ) that can be

computed using the experimental values of the applied stress σ, the initial crack length

ℓi, the critical crack length ℓc (or critical stress intensity factor Kc), the temperature

and the measured tensile modulus of paper E = 3.3 109 GPa. We note in both cases that
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Figure 2. Experimental characteristic growth length extracted from average crack

growth curves in a sheet of paper [45] compared with the prediction of (a) the GEB

model and (b) the LEB model. Note that several values of initial crack length ℓi have

been used. A linear fit allows to extract very similar values for the combined scales

δsδk and V/λ.
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Figure 3. Experimental breaking time extracted from average crack growth curves

in a sheet of paper [45] compared with the prediction of (a) the GEB model and (b)

the LEB model. Note that several values of initial crack length ℓi have been used. A

linear fit allows to extract very similar values for the combined scales δsδk and V/λ.

there is good correlation between the experimental values and the models. From a linear

fit, we can obtain the following values for the combined scales of rupture:
√

δsδk = 2.1 pm

and
√

V/λ = 3.3 pm. In figure 3 (a) and 3 (b), we compare the logarithm of the rupture

time with the energy barriers corresponding to both models, and we also find that they

describe the experiments equally well. A fit enables us to extract independently another

set of values for the combined scales of rupture:
√

δsδk = 3.3 pm and
√

V/λ = 5.5 pm.

Although the combined scales determined from the rupture time τ and the ones from

the characteristic length ζ are not exactly the same, they are close enough to consider

that both the GEB and LEB models give a consistent picture of slow crack growth.

Overall, there is apparently not much difference between the two models.

Let us now discuss in more details the scales involved in both models. In the GEB
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model, δs is supposed to correspond to an interatomic distance while δk is supposed to

be several interatomic distances. However, choosing δs = δk, we see from the comparison

of this model with the experimental data that the typical scale is δs ∼ 3 10−12 m, which

is clearly non-physical. If we force a more physical value for δs ∼ Å, then the result is

even worst since it yields δk ∼ 10−14 m. In the LEB model, although the ratio V/λ is

of the same order of magnitude than δsδk, the physical interpretation is quite different.

The scale λ is a cut-off length at which the divergence of stress is suppressed. Santucci

et al initially assumed that a natural cut-off length was the scale of the paper fibers, i.e.

about 20µm in diameter, which leads here to a value V 1/3 = 7±1 Å. This value is much

more reasonable physically than the values obtained for δs or δk in the GEB model.

Also, it is quite remarkable that we have now an activation volume that turns out to be

not so different from the one usually found with the simpler BBZ model (see Table 1).

Furthermore, it is important to realize that the results obtained with the LEB model

would still give physical estimates of rupture scales if we had chosen a very different scale

for the cut-off λ. For instance, it is well-known that paper fibers are made of cellulose

which contain fibrils of diameter D = 2.5 nm [47] and Young modulus Y = 138 GPa

[48]. These fibrils are nanofibres with a cristalline structure for which the LEB model is

especially appropriate since they will break in a brittle manner. If we compute the stress

at the scale of the nanofibres choosing λ = 2.5 nm and use the elastic modulus of the

nanofibres, one finds now V 1/3 = 1.4 Å. Although it is questionable that the nanofibres

is a physically correct cut-off scale for the stress divergence, the value obtained for the

volume is now very close to an interatomic distance and thus is very consistent with the

idea that thermally activated rupture occurs at the level of single atomic bonds.

3.2. Viscoplastic materials

3.2.1. Introduction. Many models of viscoplastic slow crack growth have been

developed with the specific case of polymers in mind [54, 61, 62, 63, 64, 65, 66, 67].

However, most of these models correspond to the case of a linear viscoelastic material,

and they have been shown to predict the correct behaviour mostly for elastomeric

polymers or polymers in a rubbery state, i.e. at temperatures above the glass transition

[63, 67]. Furthermore, breaking time laws such as the one given by the BBZ model

discussed in section 2, work better in the case of polymers in a glassy state, i. e. below

the glass transition temperature [12]. This is probably because viscous flow in glassy

polymers typically follows an Eyring law, like in most solids, while the viscous flow

of polymers in a rubbery state resembles more viscous flow in a fluid. Recent, direct

evidences of fluid-like viscous crack propagation have been observed in gels for which the

crack velocity can be either proportional to the elastic energy release rate [68] or have

a power law dependence [69]. In our brief review of slow crack growth in viscoplastic

materials under a constant load, we will mostly focus on the case of glassy polymers.

Modelling the mechanical behaviour of polymers in a glassy state, and particularly the

appearance of a yield stress and of strain hardening at large strains, has been recently
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a very active topic [70, 71, 72, 73, 74, 75]. On the other hand, experimental works

have mostly focused on understanding the fracture energy needed to propagate a crack,

including the influence of strain-rate [76, 77]. Overall, there is relatively much less work

regarding the slow crack dynamics in glassy polymers, both from an experimental and

a theoretical point of view.

3.2.2. Slow crack growth in a polycarbonate film. We describe here some recent

experimental results obtained on slow crack growth in polycarbonate films (for more

details, see [78, 79]). A centred crack of initial length ℓi is loaded in mode I at constant

velocity until reaching a stress σ that is kept constant during the slow growth of the

crack until complete rupture of the sample. During the loading phase of the film, a

macroscopic flame-shaped plastic zone appears at each tip of the crack and grows with

the applied stress (cf. figure 4 where are defined ℓ, the crack length and, ℓpz the plastic

zone length from tip to tip). This zone was previously observed by Donald and Kramer

[80]. The formation of the plastic zone corresponds to a necking instability which brings

the film thickness from 125µm to about 75±5µm. Our polycarbonate films are isotropic

and have the same mechanical properties than annealed polycarbonate. Consequently,

the thickness of the plastic zone can be considered constant and uniform except in two

small neighbourhoods close to the crack tip and close to the plastic zone tip [80].

Due to the influence of rate-effect on the polymer mechanical properties, the stress

level in the plastic zone is expected to be dependent on the growth dynamics and must

be understood as a dynamical stress. In order to estimate the stress in the plastic zone,

we can use the Dugdale-Barenblatt cohesive zone model [58, 59] which predicts the

relation between ℓpz and ℓ at equilibrium. Assuming that the stress in the plastic zone

is uniformly equal to the plastic yield stress σy of the material, Dugdale predicts:

σy =
π

2

σ

arcos
(

ℓ
ℓpz

) . (27)

The experimental values of ℓ, ℓpz and σ can be used to estimate σy. Here, we are using

engineering stresses but could have equivalently used true stresses since, as mentioned

above, the thickness of the plastic zone can be considered constant almost everywhere.

Note that equation (27) does not require the plastic zone to be small compared to the

crack size and is obtained from the condition that the stress intensity factor is zero at

the tip of the plastic zone. It is also important to realize that the values of σy obtained

in that way are very consistent with the values of the yield stress that can be determined

directly from a tensile test in a polycarbonate strip without any cracks [79, 81].

Typical growth curves of the fracture and plastic zone are shown in figure 5. We can

see right away that the prediction of slow crack growth for brittle materials, equation (16)

or (23), can not describe the shape of the crack growth curve observed here, showing

first a slowing down of the growth until the length ℓx and an acceleration afterwards.

Furthermore, the shape of the accelerated part of the crack motion is incompatible with

the prediction obtained for brittle crack growth [81].
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Figure 4. Image of a crack in a polycarbonate film with its macroscopic plastic zone

at each tip. ℓ is the crack length and ℓpz is the plastic zone length from tip to tip.
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stress experiment (ℓi = 1.5cm, F = 900N). We indicate the position of the inflexion

point tx, ℓx of the crack growth curve.

We have seen in section 2 that the Eyring model for creep flow had been proposed

as a possible interpretation of the observed stress dependence of breaking times for many

different materials. In addition, several authors have observed that plastic zones formed

during a necking instability can grow in creep conditions and that their growth velocity

also follow an Eyring law [79, 82]. Thus, we could expect that the crack growth dynamics

is controlled, at least partly, by the creep dynamics of the plastic zone. In figure 6(a),

we plot the instantaneous crack growth velocity as a function of the stress σy for eight

experiments performed with various experimental conditions. Although there is not a

direct correlation between crack velocity and the plastic stress σy, it is important to

realize that the behaviour observed at the beginning of the experiment, when the crack

is slowing down, give a correlation that is not very far from an Eyring law with a slope

quantitatively close to the one observed for the creep velocity of the necking instability

[79]. We discovered that introducing a correction to σy linear with the crack length ℓ

allows us to collapse the experimental data on a straight line (cf. figure 3.2(b)). This

correction can be written:

σcorr
y = σy + κ (ℓ − ℓx) (28)

where it is found that κ = (3.4 ± 0.6) 108N.m−3. This rescaling means that the crack

growth velocity follows:

v = v0 exp
(

ασcorr
y

)

(29)

where α = 6.8 10−7m2.N−1. Interestingly, there are indications that κℓx = σs −σ, where
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Figure 6. Natural logarithm of the instantaneous crack growth velocity as a function

of (a) the Dugdale-Barenblatt stress, (b) the corrected Dugdale-Barenblatt stress σcorr
y

according to equation (28) for eight experiments performed with various experimental

conditions (ℓi = 1.5, 2, 3cm and 2.9 < σ < 3.8 107N.m−2). In figure (b), the black line

is the result of a linear data fit.

σs represents the breaking stress of the polycarbonate film when there is no crack [79].

In the following, we emphasize two important features of the phenomenological law,

equation (29), obtained for the instantaneous crack velocity.

First, one can interpret the exponential dependence of the velocity as a function of

σcorr
y in a rather simple way if one compares this scaling with the Eyring creep law of

polycarbonate relating its strain rate ǫ̇ to the applied stress σ [8]:

ǫ̇ = ǫ̇1 exp(σV/kBT ) (30)

Creep experiments performed at room temperature on our own polycarbonate samples

give V/kBT = 7.67 10−7m2.N−1 [79]. The fact this prefactor V/kBT is of the same

magnitude than α in the exponential law for the crack velocity (cf. equation (29))

reinforces the idea that the creep of the plastic zone plays an important role in the

mechanisms of crack growth. If one identifies now α ≃ V/kBT , we find V 1/3 = 1.4 nm.

This value is close to the one normally obtained for the breaking time of polymers when

the BBZ model is used (see table 1).

Second, it is striking that the linear correction in ℓ that was added to define

σcorr
y introduces an exponential dependence of the instantaneous velocity on the crack

length ℓ. Such a dependence was already predicted in the case of brittle slow crack

growth, both in the GEB and LEB models. The characteristic growth length scale

ζVP = (ακ)−1 ≃ 4.3mm is also of the same order of magnitude than the one obtained

in the case of slow crack growth in a sheet of paper (see paragraph 3.1.3). However, it

is not clear yet whether or not ζVP depends on the applied stress σ in the same way as

in the GEB and LEB models.

Thus, equation (29) means that the crack growth velocity in a glassy polymer such

as polycarbonate can be expressed roughly as the product of a creep velocity, that takes

into account the rate dependence of the plastic stress, times a brittle-like velocity, that

depends exponentially on the crack length. As a consequence of this important property,
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we can expect that slow crack growth curves in any solid materials, even viscoplastic

ones, will have the same shape than for a brittle material as long as the influence of

rate effects on the plastic stress remains small, such that it can be considered constant

during the whole crack growth.

3.2.3. Possible origin of the brittle-like term in viscoplastic materials. Here, we want to

emphasize that it is not obvious to understand the physical reason behind the observed

dependence of the crack velocity on crack length in polycarbonate films. The size of the

plastic zone that Dugdale predicted was obtained by noting that the total stress intensity

factor at the tip of the plastic zone must vanish. Hence, as it was already discussed by

Rice [54], the elastic energy release rate must also be zero. All the variations of elastic

energy during crack growth have to go into the plastic zone so that nothing can be used

to help the crack grow. This argument has led Chudnovsky et al [67] to postulate the

existence of an out of equilibrium situation where the total stress intensity factor is not

exactly zero. However, allowing for a time relaxation of the fracture energy needed to

propagate a crack, Chudnovsky finds a crack growth law that has exactly the same form

than the one obtained in linear viscoelastic models [62].

Another approach to solve the problem could be to recognize that, once the plastic

zone has been formed by necking, it can behave again elastically (it is well-known that

the plastic plateau ends after the necking instability occurred and is followed by an

hardening elastic response [84]). Then, it is very likely that there will be a stress

intensification at the crack tip. A rough estimate of the stress intensification for an

ideally straight crack and assuming that the plastic zone behaves with the same elastic

response as the rest of the film, would predict that the stress is larger than twice the

applied stress σ at distances from the crack tip smaller than about 0.16ℓ. Since we have

a ratio ℓpz/ℓ ∼ 2 and thus σy/σ ∼ 1.5 [79], we can conclude right away that most of the

plastic zone is submitted to a Dugdale plastic stress while stress intensification remains

confined in a smaller region close to the crack tip. Now, if one applies the LEB model

using the local stress at the crack tip, the rate of rupture will increase with crack length

and we can expect to recover the observed dependence on crack length. Thus, we reach

again the conclusion that it is easier to understand the experimental observations by

reasoning at a local scale rather than by reasoning using global energy balance models.

4. Conclusion

A large corpus of experiments shows that the breaking time of solid materials submitted

to a constant load is proportional to an Arrhenius factor with an energy barrier that

decreases with the applied stress. An exception is, for instance, the case of polymers in

a rubbery or elastomeric state. The Arrhenius behaviour is a clear sign that thermally

activated processes cause rupture and this picture is reinforced by several experiments

showing how breaking time depends on temperature. We have reviewed several models

that are consistent with experiments and differ mainly with the precise functional
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dependence of the energy barrier on the applied stress. The BBZ model, that can

be viewed as a first order approach to describe experimental data, leads to experimental

values of the maximum energy barrier close to the theoretical value for the rupture of

atomic bonds. On the other hand, it predicts a scale of rupture of the order of a few

nanometres which is a little bit too large if bond rupture is to be the correct mechanism.

We have also discussed various GEB models, based on global energy balance as inspired

by Griffith’s original approach, and have shown they often tend to overestimate the

size of the energy barrier, and thus lead to unphysical predictions. Finally, we have

introduced the LEB model which considers that the rupture rate depends only on the

local state of stress in the material and how far this stress is from an intrinsic rupture

threshold. A major fault of many of the models presented here is that they neglect the

progressive accumulation of damage before complete macroscopic rupture of a sample.

In the second part of this review, we have focused on the growth of a single crack

under a constant load, which is a very simple case where the slow dynamics of rupture

can be followed in time. We have first discussed the case of brittle materials that have

a simple linear elastic response up to rupture. In the framework of the GEB model,

lattice trapping effects can help understanding the existence of a range of crack length

for which thermally activated crack growth exist. In the framework of the LEB model,

the crack is naturally in subcritical condition as long as the local stress at the crack

tip is smaller than the rupture threshold. Both the GEB and LEB model predict that

the crack velocity should increase exponentially with crack length. Both models also

introduce two characteristic length scales in the problem. However, comparisons with

recent experiments on paper sheets, show that the GEB model fails to predict physically

realistic values for both length scales that are found to be much too small. This is in our

view another proof that the GEB model overestimates the energy barrier. On the other

hand, the LEB model leads to much more physical values for the length scales. One of

them seems to correspond well to a characteristic cut-off scale of the stress divergence

at the crack tip while the other one is coherent with a rupture process at the atomic

scale. Finally, we have discussed the case of viscoplastic materials by focusing on recent

experimental results obtained by us. We have shown that in a glassy polymer such as

polycarbonate the crack velocity can be obtained, roughly, as the product of a creep

velocity, taking into account strain-rate effects on the plastic stress, times a velocity

with the same functional dependence on crack length than the crack velocity in brittle

materials. We argue that the LEB model is the best framework to understand the

remarkable appearance of a brittle-like term for the instantaneous crack velocity in a

glassy polymer.
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