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Abstract. Some materials, and in particular some polymer materials, can display an important range of
stress levels for which slow and progressive damage can be observed before they finally break. In creep or
fatigue experiments, final rupture can happen after very long times, during which the mechanical properties
have progressively decayed. We model here some generic features of the long-time damage evolution of
disordered elastic materials under constant load, characterized by a progressive decrease of the elastic
modulus. We do it by studying a two-dimensional electric random fuse network with quenched disorder
and thermal noise. The time evolution of global quantities (conductivity or, equivalently, elastic modulus)
is characterized by different regimes ranging from faster than exponential to slower than logarithmic, which
are governed by the stress level and the relative magnitude of disorder with respect to temperature. A region
of widely distributed rupture time exists where the modulus decays (more slowly than) logarithmically for
not too small values of the disorder and for not too large values of the load. A detailed analysis of the
dynamical regimes is performed and presented through a phase diagram.

1 Introduction

Materials, and in particular polymer materials, can be
brittle or ductile. When submitted to an increasing stress,
they can either break suddenly above a critical value,
or undergo progressive damage as stress increases up to
a stress level where final rupture of the sample occurs.
An important parameter in the appearance of progressive
damage is the disordered nature of materials [1–3]. When
submitted to a constant load, materials break due to ther-
mally activated processes which produce a slow rupture
dynamics (see [4] and references therein). Depending on
the nature of the material and the constant load level,
the amount of damage accumulated at the time of catas-
trophic rupture can be almost negligible or instead very
large. While many materials undergo very little damage
before final rupture, polymer materials can display an im-
portant range of stress levels over which slow and signifi-
cant progressive damage will be observed, contributing to
creep until the final rupture. Being able to control the evo-
lution of the mechanical properties during the slow dam-
age regime as well as the duration of this regime is crucial
for applications in which the finite life-time of materials is
an important issue.

Correspondence to: loic.vanel@univ-lyon1.fr

For instance, glass fiber reinforced polyamides, used in
the automotive industry thanks to their light weight in
comparison to metals for the same rigidity, are submit-
ted to a relatively high level of stress, during a long time.
Standard cyclic fatigue tests [5] are usually performed in
order to determine stress versus lifetime curves for these
polymer composite materials, typically at frequencies of
a few Hz or a few tens of Hz and at different temper-
atures [7,6]. More generally, the mechanical behavior of
semi-crystalline polymers has been widely studied over
the past decades and is still an intense research subject
[8–13,16,17,14,15,18]. At small stresses the elastic and
viscoelastic behavior of semi-crystalline polymer involves
the interlamellar amorphous phase, and at higher stresses
the plastic behavior involves the crystalline phase. The
mechanical properties of the polymers drops as a function
of the duration during a fatigue test, even if the maxi-
mum stress belongs to the elastic or viscoelastic domain.
A part of irreversible damage occurs and this damage is
not completely understood. Kuksenko and Tamusz have
studied polymers in situ by SAXS [19] and observed the
formation of microvoids during a tensile experiment. The
size of the microvoids remain constant and the breaking
occurs when a critical density of microvoids is reached.
In oriented polymers the size of the cavities is of a few
tens of nanometers, whereas in non oriented polymers the
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size of the cavities is about some thousands of nanometers.
Recently, Castagnet et al [14] characterized the polyvinyli-
dene fluoride (PVDF) by volumetric measurements during
tensile test and by SAXS. It has been shown that cavities
occurs in the interlamellar amorphous phase just before
yielding. Pawlak and Galeski [15] studied the cavitation
and the crystal shearing. In polyamide, because of the high
resistance of the crystals, the main damage mechanism is
cavitation.

The microscopic origin of the damage is still a subject
of scientific studies, and depend on the material. How-
ever, we argue here that some generic features should be
present in a very wide class of materials for which time
plays an essential role in the damage mechanisms. In such
circumstances, we assume that damage is related to nu-
cleation of defects, or cavities, which grow in number, or
which may grow in size. The dominant damage mecha-
nism results therefore from the competition between the
two following mechanisms: either 1) the increase of the
number of cavities thanks to independent nucleation pro-
cesses throughout the sample, until the number of cavities
reaches a critical value above which the material crumbles,
or 2) the growth of a single defect which results in the ap-
parition of a fracture in the material.

In this manuscript, we assume that the nucleation of
defects is an activated process which takes place on a
time scale much longer than any microscopic time scales
(10−12s on the molecular scale). The barriers depend on
the applied stress, and for the slow rupture process that
we are interested in, the corresponding barriers for nu-
cleation are larger than a few tens of kBT so that each
nucleation event takes place on a macroscopic time scale.
As we shall see, materials for which a slow and progres-
sive damage regime do exist, on time scale which may be
longer than a week or more, are characterized by a wide
distribution of nucleation energy barriers. The transition
between mechanisms 1) and 2) may be obtained when re-
ducing the width of the energy barrier distribution, so that
the increase of stress ahead of a small defect may be suffi-
cient to induce on time scale short enough the nucleation
of another cavity just ahead of this defect, resulting thus
in a catastrophic fracture process.

The aim of this manuscript is to show how one can
determine the phase diagram corresponding to the vari-
ous damage behaviors on a wide range of time scales, as a
function of the width of the energy barriers distribution,
the temperature, and the stress level. We do not specify
the nature of the microscopic damage, but we just assume
that it appears through a nucleation mechanism where
the distribution of nucleation barriers characterizes a dis-
order in the rupture properties of the material. Once a
microscopic damage has nucleated the broken region can
no longer bear stress and the latter is redistributed assum-
ing elastic interactions. The competition between disorder
and elasticity is crucial, because it can be responsible for
long-time damage and fatigue of the sample and can deter-
mine a transition from brittle to ductile behaviour when
the disorder becomes dominant. Indeed, many theoreti-
cal studies have shown that depending on the strength of

the disorder and stress level different regimes may appear,
such as abrupt rupture, rupture with localized damage or
rupture with diffuse damage [1–3,20–26].

Three dimensional elastic behavior in a disordered ma-
terials is quite costly to calculate. Thus, we chose to study
a simpler model, where the 3D elastic displacement is re-
placed by a scalar quantity analogous to an electrical po-
tential and the elastic stress is replaced by the electrical
intensity in a 2D electrical network. Computation is there-
fore less demanding and allow to reach longer time scales
which are the central purpose of our study. Such models,
so-called random fuse network (RFN) or fibre bundle mod-
els (see [3] and refs. therein), have two interesting limiting
cases which correspond to the two damage mechanisms we
would like to model: weak disorder, where cracks quickly
nucleate and propagate up to macroscopic fracture, and
strong disorder, where more extensive damage develops
before rupture [1,20,31,37].

Up to now, thermally activated rupture damage in
RFN models has been studied mainly in 1D. It was shown
that overall disorder will decrease the lifetime of the net-
work [32–36] as long as less than 50% of the network is
broken [36]. However, it was also found that the rate of
broken fuses is non monotonous in time: first it decreases
mostly as 1/t (thus resulting in a logarithmic decay of the
damage) and then it increases until macroscopic rupture
occurs [35]. In comparison, the full dynamics of the 2D
RFN with disorder and thermal noise is little explored [37,
38]. A clear connection between the actual dynamical re-
sponse of the 2D RFN under constant applied stress and
the damage dynamics as a function of disorder, tempera-
ture and external loading is still lacking. In fact, the 2D
dynamics turns out to be richer and much more complex
than in 1D because of the competition between disorder
and stress intensification due to stress concentration at
microcrack tips, which results in a non-uniform redistri-
bution of stress and in possible cascade ruptures. These
ingredients make the 2D RFN more realistic and closer
to experimental systems, and thus more useful to under-
stand the fracture mechanics and the fatigue mechanisms
of disordered materials.

In this paper, we present a study of the rupture dy-
namics by means of a 2D RFN at constant imposed cur-
rent in different regimes of temperature and disorder and
analyze in detail the conditions under which a logarith-
mic decay of the fracture process can be observed. Our
results suggest a transition from exponential to logarith-
mic dynamical evolution as disorder increases. The paper
is organized as follows. In Sec. 2 we briefly recall the ran-
dom fuse network. In Sec. 3 we discuss the results about
the dynamical evolution of the modulus of the network
and the occurrence of different dynamical regimes. A de-
tailed analysis of these dynamical regimes is reported in
Sec. 4 through a phase diagram, with the emphasis on the
logarithmic regime associated to the slow damage dynam-
ics of the network. The last section is devoted to some
concluding remarks and perspectives.
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2 Model

We consider a 2D RFN of size M × N with square lat-
tice topology at finite temperature, M and N being the
number of nodes in the x and y direction respectively (see
also Ref. [37]). Each of the bonds in the network is a fuse
with unit electrical conductance. The network is driven
by a constant current i0 (constant force per spring F0

in the spring system) applied at the top of the system,
yielding a total current Mi0 flowing through the network.
We notice that the 2D RFN is equivalent to a square
lattice of springs in antiplane deformation. At variance
with the 1D RFN, where the load is shared equally among
the unbroken fuses, the elasticity in the 2D geometry al-
lows for stress concentration at microcrak tips, leading
to non-uniform stress redistribution and to a competition
between aleatory rupture events and cascade effects. A
scheme of the model showing this kind of effects is dis-
played in Fig. 1.

Mi0

Mi0

Fig. 1. Scheme of the 2D RFN on a square lattice. A total
current Mi0 is applied at the top of the system in the vertical
direction. The intact horizontal (vertical) fuses are represented
by horizontal (vertical) lines whose thickness is proportional
to the local current iℓ. No line is drawn for the broken fuses.
Notice that in the vicinity of broken fuses a higher local current
flows on the intact vertical fuses.

Two important ingredients of the model are disorder
and thermal effects. Each fuse k carries a current rupture
threshold ic(k). We introduce quenched randomness in the
model by extracting the thresholds ic from a uniform prob-
ability distribution with mean < ic >= 1 and variance
Td. This represents a disordered distributions of hetero-
geneities in the sample, as found for instance in polymer
composites. In order to model the system at finite tem-
perature we also add temporal thermal fluctuations in lo-
cal currents δiℓ(k) on each fuse k, following a Gaussian
distribution with zero mean and variance T . A fuse will
break irreversibly when the total current across the fuse
overcomes the current threshold on that fuse given by the

distribution of disorder, as pictorially illustrated in Fig. 2.
Thermal fluctuations add to the local current iℓ on a given
fuse and can allow for rupture of a fuse even if iℓ < ic.
In this model, the mean rupture time τ of a fuse can be

iℓ

thermal
noise

disorder2
√

T

2
√

3Td

< ic >

Fig. 2. Sketch of the probability distribution thermal fluc-
tuations (left) and of rupture thresholds (right), pictorially
illustrating the effect of thermal effects and disorder respec-
tively. Current thresholds are distributed uniformly with a vari-
ance Td (corresponding to a width 2

√
3Td of the distribution)

around a mean value < ic >, while thermal fluctuations follow
a Gaussian distribution with variance T and are superimposed
to the local current iℓ.

expressed as

τ = τ0 exp

[

(ic − iℓ)
2

2T

]

, (1)

where τ0 is a time prefactor. The failure time τF (life-
time) of the entire network will occur when no current
can flow anymore through the system. In the next sec-
tions we present the results of the numerical simulations
of this model [40].

3 Rupture dynamics at constant applied force
(current)

The dynamical behaviour of the system can be character-
ized by the global conductivity E of the network, which
is defined by the ratio of the total applied current Mi0 to
the net potential difference between the top and bottom
of the system, ∆Vcc:

E =
Mi0
∆Vcc

. (2)

Eq. (2) would correspond to the elastic modulus if we
define the system in terms of forces and displacements, so
that E is the ratio between the applied force and the net
displacement of the network.

In one dimension, E is directly related to the fraction
of broken fuses Φ(t) = n(t)/Ntot through the relation

E(t) = E0 (1− Φ(t)) (3)

where n(t) is the number of broken fuses, Ntot is the total
number of fuses and E0 = M in our units. The initial
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rupture behavior is such that n(t) ∼ ln t [35] so that E(t)
is expected to decrease logarithmically with time. In two
dimensions, a good approximation of Eq. (3) for random
damage is E ≃ E0(1− 2Φ) [38,39]. Thus, we also expect a
simple relationship between the temporal evolution of the
modulus and the damage as measured by the fraction of
broken bonds.

In order to see the influence of the different parameters
on the dynamical evolution of the 2D RFN we plot the
modulus as a function of time in Fig. 3 by fixing two of
the parameters Td, T and i0 and letting the third one
vary. The last point in time for each curve corresponds
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Td = 0.2

Td = 0.15

Td = 0.1

i0 = 0.14

i0 = 0.1

i0 = 0.06

Td = 0.2; i0 = 0.1
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Td = 0.2; T = 0.004

(a)

(b)

(c)

Fig. 3. Time evolution of the modulus for T = 0.004, i0 = 0.1
and three values of Td (a), Td = 0.2, i0 = 0.1 and three values
of T (b), Td = 0.2, T = 0.004 and three values of i0 (c).

to the lifetime τF of the network for that given set of
parameters: beyond this point catastrophic rupture occurs
and the modulus abruptly becomes zero. In the 2D RFN
we observe the same general qualitative trend with respect
to the parameters Td, T and i0 as in the 1D model: an
increase in current, temperature or disorder reduces the
lifetime of the network.

We find that the functional form of E(t) crucially de-
pends on the choice of Td, T and i0. Some prototypical
behaviours are illustrated in Fig. 4, which shows the dy-
namical evolution of the modulus for i0 = 0.1 and for four
values of the disorder (Td = 0.001, 0.1, 0.15, 0.2). For very
low Td the dynamical behaviour is dominated by thermal
fluctuations and the modulus will decay mostly exponen-
tially in time as it can be seen in Figs. 4(a)-(b). This
exponetial behavior can be interpreted as follows. For the
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(a)

(d)

slower than
 logarithmic

(c)

Td = 0.2
T = 0.002
i0 = 0.1

Td = 0.1
T = 0.01
i0 = 0.1

Td = 0.001
T = 0.02
i0 = 0.1

Td = 0.15
T = 0.004
i0 = 0.1

Fig. 4. Time evolution of the modulus (solid lines) for i0 = 0.1
and for four different values of the disorder as indicated in
the legends. The dashed lines in (a) and (b) are exponential
fits to the data, while the dashed-dotted lines in (b)-(d) are
logarithmic fits.

most part of the process, i.e. until almost the final rup-
ture, each fuse breaks independently from each other, with
a similar time scale, because the disorder (i.e. the barrier
distribution) is narrow. Each fuse breaks following inde-
pendent Poisson (exponential) processes as it is usual in
independent nucleation processes. At some point, the in-
tensification of stress is sufficient to induce fracture prop-
agation corresponding to the final rupture of the sample.
The conclusion is that, in this regime, the effect of stress
redistribution can be considered negligible.

If we increase Td we see, after an initial exponential
transient, a logarithmic decay ofE(t) (see Fig. 4(c)), which
is characteristic of a slow damage dynamics of the net-
work, as we will discuss in Sec. 4. For larger values of Td

the modulus develops a slower than logarithmic tail, as it
is clear from Fig. 4(d). At the same time, we can observe
that the value of the modulus just before the final rupture
event depends rather weakly on Td, especially at higher
values of Td, and is mainly determined by the value of i0.

The transition from exponential to logarithmic rup-
ture dynamics as a function of disorder is a novel aspect
of the 2D RFN that has not been studied in detail so far.
In fact, previous studies on the 1D RFN were mainly car-
ried out in the strong disorder limit where it was found
that the rate of broken fuses follows a 1/t decay, the so-
called Omori law, thus yielding a logarithmic evolution of
the modulus [35,36]. In our model we can qualitatively ex-
plain the transition by considering the time distribution
of individual rupture events, i. e. by looking at the times
at which fuses break in the network. In the exponential
regime these times are rather equally distributed, while
in the logarithmic one they are rather scattered and very
different. This is due to the fact that for low disorder there
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is not much difference in the rupture thresholds, so that
rupture events can occur everywhere in the system with
almost the same probability; on the other hand, for large
disorder, rupture thresholds differ considerably and the
rupture process break fuses with progressively increasing
rupture thresholds [35]. The time scales associated to the
weakest fuses are the shortest, thus the latter break first.
The strongest fuses break on a longer time scales. Note
that there is no causation in this regime, since stress re-
distribution is negligible here: each fuse break randomly
with, statistically, its own time scale associated with local
stress level and critical stress level.

By closely examining Fig. 4 one can clearly see that,
irrespective of the value of Td, there is always an initial
transient of E(t) that can be described by an exponential
evolution. Moreover, the relative width of this transient
regime (i.e. the width compared to the lifetime) decreases
as a function of Td. Even if the rupture times of individ-
ual fuses are broadly distributed, yielding a logarithmic
evolution of the modulus, there is always an initial stage
where independent rupture events with very similar rup-
ture times occur, leading to an initial exponential decay of
the modulus. The timescale of this initial exponential de-
cay is set by the lowest rupture threshold (or lowest energy
barriers) of the sample, here corresponding to 1−

√
3Td.

4 Analysis of the dynamical behavior

The occurrence of the logarithmic regime has been inves-
tigated in detail through a proper data analysis the aim
of which is to build a phase diagram where we can distin-
guish definite regions of the parameter space characterized
by different dynamical evolutions of the modulus. We look
for a form of the first derivative of the modulus of the type

dE

dt
= −E0

N

K

tp
, (4)

where K is a constant and p is the analogous of the Omori
exponent in 2D. The goal is to find the exponent p. If p = 1
with a prescribed numerical precision, the evolution of E
will be logarithmic. If p 6= 1 there will be a deviation from
the logarithmic evolution of E (linear evolution in log-lin
scale). If p < 1, the evolution is faster than logarithmic
and if p > 1 the evolution is slower than logarithmic.
We also compare the evolution of the modulus to a pure
exponential decay. The details of the data analysis are
explained in Appendix A.

The phase diagram obtained with this analysis is pre-
sented in Fig. 5 in the plane (x ≡

√
Td/T, i0), where three

well-defined regions can be distinguished: p > 1 (squares),
p < 1 and slower than exponential (circles), p < 1 and
faster than exponential (diamonds). Qualitatively we see
that the slower than logarithmic regime (p > 1) occurs for
rather high values of x (x > 70) and for small values of i0
(i0 < 0.22).

In order to justify the choice of the parameter x and to
trace analytical curves separating the three regions we ar-
gue that the logarithmic and the exponential regimes cor-
respond to given values of the width of the rupture time

10
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3
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0.3
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√

Td/T
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slower than logartihmic
faster than log.
and slower than exp.
faster than exponential
logarithmic
exponential

0

0

Fig. 5. Phase diagram in the (x ≡
√
Td/T, i0) plane: the open

squares, the open circles and the open diamonds correspond to
triplets (Td, T , i0) for which the modulus follows a slower than
logarithmic evolution, a faster than logarithmic (but slower
than exponential) evolution and a faster than exponential evo-
lution respectively. The two lines are curves of the form A−C/x
that have been plotted to visually distinguish the three regions.
The solid (dashed) line should ideally correspond to points
triplets for which the modulus displays a “truly” logarithmic
(exponential) evolution. A = 0.22 and C = 11 for the solid
line, A = 0.27 and C = 4 for the dashed line.

distribution of individual events. In fact, as explained at
the end of Sec. 3, we expect that the rupture time distri-
bution governs the occurrence of the different dynamical
regimes, and specifically a rather narrow (large) time dis-
tribution for the exponential (logarithmic) regime. Let us
consider first the rupture time distribution of individual
fuses carrying a current iℓ ≃ i0 when the network is still
intact. The ratio R between the maximum rupture time
τmax and the minimum rupture time τmin in the network
can be obtained from Eq. (1) where ic = 〈ic〉 ±

√
3Td:

R =
τmax

τmin

= exp

[

2(〈ic〉 − i0)
√
3Td

T

]

, (5)

We can also write this equation:

i0 = 〈ic〉 −
lnR
2
√
3

T√
Td

, (6)

which relates the applied current i0 to the ratio T/
√
Td

and corresponds to a given dynamical behavior assuming
it is set by the value of R. Eq. (6) does not take into
account the progressive increase in the local current iℓ re-
sulting from stress intensification as well as the existence
of a percolation threshold ip for a given amount of dam-
age Φ above which a catastrophic rupture of the network
will occur spontaneously, i. e. without the help of ther-
mally activated rupture. We find that the various dynam-
ical regimes of rupture can effectively be described by the
following equation inspired from eq. (6):

i0 = A− C
T√
Td

, (7)
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Appropriate values of A and C yield analytical curves sep-
arating the three regions in Fig. 5: the solid and dashed
line in Fig. 5 correspond to the location of points whose
dynamical evolution is really logarithmic (p = 1) and ex-
ponential respectively. Note that at the border between
these two regions the behaviour is a bit fuzzy, making it
more difficult to define a “truly” logarithmic or exponen-
tial evolution. We also find that the values obtained for A
are close to the typical values of the percolation thresh-
old: for instance, a disorder Td ∼ 0.33 so that min(ic) ≃ 0
gives a percolation threshold of the network ip ≃ 0.236.

In order to link the rupture dynamics to the spatial dis-
tribution of rupture events we show in Figs. 6 and 7 some
snapshots of the broken fuses just before the final rupture
for different values of x and i0. In particular, in Fig. 6 we
compare the final snapshots for two rather different val-
ues of x, x = 49 and x = 387, fixing i0 = 0.2. For large x,

x = 49; i0 = 0.2 x = 387; i0 = 0.2

Fig. 6. Snapshot of the broken fuses (black dots) just before
the final rupture for Td = 0.001, T = 0.02 and i0 = 0.2 (left),
Td = 0.15, T = 0.001 and i0 = 0.2 (right). A zone with rather
large cracks is encircled in the left panel and is zoomed in the
centre panel.

damage is scattered everywhere in the sample, while for
smaller x we notice more localized damage zones and a
higher tendency to form straight cracks (in the direction
perpendicular to the applied current). Moreover straight
cracks tend to coalesce forming larger non-straight cracks
(see e.g. the encircled zone in the left panel of Fig. 6 and
its zoom in the centre panel). It has to be noted that, es-
pecially at low values of i0, there is always a background
of many diffuse rupture events just before the final rup-
ture of the sample, even at small x, although their numbre
increases when increasing x. In Fig. 7 a comparison of the
snapshots of broken fuses for x = 223 and two extreme
values of i0 (i0 = 0.08 and i0 = 0.4) is shown. The ef-
fect of a very large applied current is drastic, since only
very few rupture events occur before the final avalanche,
while for a very small current the system is more signif-
icantly damaged before global failure. This behavior can
be understood by considering that for a large applied cur-
rent (i0 >

√
Td) it is easier to break a fuse next to an

already broken fuse, so that damaging will mainly pro-
ceed by growth of cracks and cascade of rupture events.

x = 223; i0 = 0.08 x = 223; i0 = 0.4

Fig. 7. Snapshot of the broken fuses (black dots) just before
the final rupture for Td = 0.2, T = 0.002 and i0 = 0.08 (top),
Td = 0.05, T = 0.001 and i0 = 0.4 (bottom).

The same situation will happen when temperature is high
enough (small x). On the other hand, for small applied
currents and/or large x such correlations between rupture
events will smear out and the resulting damage dynam-
ics will be characterized by a more diffuse distribution of
breaking events, which is reflected by a slow logarithmic
evolution of the modulus. This is the relevant regime in
applications for which materials must have a long lifetime
under applied solicitations of moderated amplitudes.

5 Conclusion

We have studied the dynamical behaviour of the 2D RFN
with disorder and thermal noise, at constant imposed cur-
rent, by exploring different regions of disorder Td, tem-
perature T and applied current i0. We have found a rich
variety of regimes in the rupture dynamics, ranging from
faster than exponential to slower than logarithmic. The
transition between the different regimes is mainly deter-
mined by the values of

√
Td/T and i0. In particular, for

large
√
Td/T and small i0 the modulus displays a (slower

than) logarithmic evolution, which is a signature of a slow
and diffuse rupture process in the system. This is consis-
tent with recent experimental results where the logarith-
mic relaxation was connected to the slow rupture dynam-
ics [42,7]. Our study suggests that it is therefore important
to follow the long-time fracture behaviour and the dam-
age dynamics of the system, which can give an insight on
the rupture mechanisms of the material. In our 2D RFN
the material is modeled as a network experiencing scalar
elasticity. It would be desirable to extend this model to
full 3D elasticity and to the continuum limit in order to
make a closer contact with real experimental systems.

We have modeled the systems with a distribution of
rupture threshold. Note that, in terms of activation en-
ergy distribution, this is equivalent to a material with a
distribution of local intensification of the stress due to
heterogeneities of the materials. Such a feature is intrin-
sic for instance to semi-crystalline polymers for which the
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crystallite lead to local stress amplifications in the amor-
phous phase, or even more in glass fibers reinforced semi-
crystalline polymers. Anisotropic rigid inclusions, such as
glass fibers, with a length more than ten times larger than
the fiber diameters (typically 10 µm) lead to a distribu-
tion of local stress spread over more than a decade [6].
Our model allowed us to obtain a phase diagram regard-
ing the dynamical evolution under damaging events of
the elastic modulus of disordered materials submitted to
an applied stress. This kind of approach should be useful
for interpreting slow creep experiments in semi-crystalline
polymers, or fatigue experiments in these materials. It
should be also of interest for such kind of experiments
in a broad class of heterogeneous materials, either with a
wide distribution of energy barriers, or with a wide distri-
bution of stress amplification at a microscopic level. Our
results have also illustrated that the transition between
rapid/exponential damaging and slow/logarithmic dam-
aging is accompanied by a very different rupture pattern:
narrow disorder (exponential decay) results in rupture by
crack growth, whereas broad disorder results in rupture by
accumulation of random nucleation of defects (cavities,...)
throughout the sample. This feature will be quantified and
studied more systematically in future works. When fully
developed, this kind of approach should help for calculat-
ing the appropriate level of stress to which parts should be
submitted, according to the aimed lifetime of materials, as
a function of their disordered nature.

A Technical details of the data analysis

Starting from Eq. (4), after some algebraic manipulations
on the first and second derivative of E, we obtain

1− p =

d2E
d log t2

dE
d log t

. (8)

1− p = 0, 1− p > 0 and 1− p < 0 correspond respectively
to a logarithmic, faster than logarithmic and slower than
logarithmic decay of E(t). We have determined for each
simulation the typical value of 1− p computed using eq. 8
and the value of E measured in the numerical simulation.
As the rupture process is statistical, an average over sev-
eral simulations in the same conditions has been done to
obtain E(t) [40]. However, the resulting first and second
derivatives computed in eq. 8 will still be rather noisy. In
order to take into account this noise, we use the follow-
ing procedure. First, we introduce the time t∗ at which
the modulus has halved with respect to its value Emin

reached at the final breaking stage:

E(t∗) =
1

2
(E0 + Emin). (9)

This choice of t∗ has been made to avoid the time bound-
aries and in particular the initial flat region of E(t). We
look for the time interval (tmin, tmax) in which 1− p is a
constant within a tolerance ∆const:

|1− p(t)− (1− p(t∗))| < ∆const. (10)

We have chosen ∆const = 0.4. Then we calculate the aver-
age value of 1−p in (tmin, tmax) and we look at its sign to
determine the type of evolution of E(t), i.e. logarithmic,
or faster (slower) than logarithmic.

Besides the analysis of the logarithmic evolution, we
have also performed exponential fits to the initial time
region of E(t) in order to assess the occurrence of a faster
or slower than exponential decay of the modulus.

As already mentioned in [40], we stress here that all

the quantities analysed, such as E, dE
dt
, d2E

dt2
and 1−p, are

averaged over 10 realizations. We have also introduced
an extra filter in the data analysis considering only cases
where lifetime is larger than 1000.
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