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ABSTRACT: We propose an approach based on the combination of different techniques in order to discriminate various 
reinforcement effects in vulcanized natural rubber elastomers with various cross-link densities, filled with carbon black or 
silica: mechanical response, independent measure-ments of the cross-link density by proton multiple-quantum NMR, and 
measurements of chain segment orientation under stretching by X-ray scattering. We show that, while the modulus 
measured in dynamical mechanical measurements decreases as the strain amplitude increases (Payne effect), the response of 
the elastomer matrix in terms of average chain segment orientation under stretching measured by X-ray scattering stays 
constant. The amplification of average chain segment orientation is comparable to the amplification of modulus measured at 
medium/large strain amplitude. By analyzing the deviations with respect to the behavior of the pure unfilled elastomer 
matrix, we show that the contribution due to strain amplification effects in the elastomer matrix can be selectively 
distinguished. We show that the mechanical response at medium/large strains is essentially driven by strain amplification 
effects, while, in the linear regime, there is a strong additional reinforcement which is not related to the properties of the 
elastomer matrix. Hypothesis on the origin of this additional reinforcement are suggested and discussed.

1. INTRODUCTION

The search for lighter and nevertheless high mechanical
performance materials has boosted the use of polymer
composite materials in the industry. On the one hand, much
progress has been made in the understanding of their
mechanical properties based on mainly geometrical and/or
structural arguments and the knowledge of the individual
properties of the polymer matrix and the solid fillers.1 On the
other hand, in the past decade, there have been increasing
evidence that the physical properties of the polymer itself can
be strongly modified at the solid interface, especially when
considering nanometer scales for which shifts of the polymer
glass transition temperature Tg have been reported.2,3 Such
modification of the polymer properties at the molecular level
should have a significant impact on the mechanical properties
of nanocomposites, and in particular on reinforcement, which
can be defined in a heuristic way, e.g., as the ratio R of the
elastic modulus of the composite material over that of the pure
polymer matrix. However, quantifying the relative contributions
of the various physical mechanisms that can explain mechanical
reinforcement of nanocomposites remains a true experimental
and theoretical challenge.4

Elastomers filled with solid particles or aggregates (denoted
as fillers) have remarkable mechanical properties, with a rich
and complex phenomenology.5 Carbon black (CB) and/or

silica (SIL) aggregates are commonly used as fillers.6 Efficient
reinforcement is obtained with submicrometric or nanometric
fillers dispersed down to the scale of elementary aggregates or
particles. It has been a challenge to elaborate a unifying picture
of the quite diverse but nevertheless related effects occurring in
these materials. The primary effect is modulus enhancement in
the linear regime, with a marked dependence on the filler
morphology, volume fraction, average size, surface treatment
and dispersion state. The modulus enhancement, represented
as the ratio R defined above, has a marked temperature
dependence, with a maximum a little bit above the glass
transition temperature Tg of the pure matrix (see Figure 1a).
There is usually a large temperature range in which the
reinforcement is significantly higher (and sometimes much
higher) than predicted by the pure hydrodynamic (or strain
amplification) effect, specially at relatively high filler volume
fractions. The material toughness, or equivalently energy at
break, is also strongly enhanced. Associated to reinforcement is
the so-called “Payne effect”, that is the large drop of the storage
modulus measured in oscillatory strain, together with a peak in
loss modulus, as the strain amplitude is increased beyond
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typically 1% to 10% (see Figure 1b).7 It is important to note
that, after some transitory, partly irreversible drop of modulus
(the so-called “Mullins effect”), this decrease of the modulus as
a function of the strain amplitude (as illustrated in Figure 1b) is
reversible. The behavior of un-cross-linked polymer melts is
also strongly affected by the presence of solid filler particles. In
particular, very long relaxation times appear, eventually
resulting in huge modulus enhancement at low frequencies.
For the sake of clarity, we shall discuss only cross-linked
materials here.
Several approaches, based on different physical mechanisms,

have been proposed to explain reinforcement.
In one class of approach, the predominant mechanism relies

on filler−matrix interactions at filler surfaces.8 Chain adsorption
would be responsible for an increased density of trapped
entanglements around filler particles which would be
responsible for the enhanced modulus (beyond the pure
hydrodynamic effect) in the linear regime. In this approach, the
mechanical response is essentially driven by the properties of
the elastomer matrix alone. Studies have been performed with
polymer chains of different molecular weights and fillers with
different surface treatments to vary the density of trapped
entanglements.8 In particular, below the filler percolation
threshold, reinforcement thus would come from parts in the
matrix in which elastomer chains are subjected to very high
local strains and/or an increased density of effectively active
constraints (cross-links and entanglements) in the vicinity of

filler particles, due to trapping effects associated with
adsorption of chains on the filler surfaces.9−12 Then, a
significant fraction of the chains might contribute to modulus
enhancement at large strain amplitude due to finite chain
extensibility.8

These trapped entanglements would be released due to chain
desorption upon applying a large amplitude strain, which would
explain the drop of the modulus. Indeed, there has been a
number of studies which show that reinforcement is affected by
the polymer molecular mass and is particularly pronounced
when distances between fillers are comparable to or larger than
the size of the chains, which very roughly corresponds to the
thickness over which the density of trapped entanglements
would be increased around the fillers.8,9

On the other hand, nonlinear effects and dissipative
properties have been explained by desorption/absorption of
polymer chains at filler surface,13 leading to disentanglement of
bulk rubber matrix from bounded chains.14

However, there has been no direct experimental evidence of
an increased density of entanglements close to filler particle
surfaces, nor of disentanglements under the effect of large
amplitude strain. Interpretations were based on careful analysis
of mechanical experiments, in which the response of the whole
material is measured, with contributions coming from the
matrix, fillers and interfaces. Molecular dynamics simulations
show that the entanglement density may be increased in the
vicinity of an adsorbing surface.15 Monte Carlo simulations of
chain wrapping around fillers and disentanglement under large
amplitude strain have been performed.16

Another mechanism which has been put forward is filler
agglomeration and percolation, resulting in filler networking.17

In such a picture, the large enhancement of the modulus is
related to the transmission of the stress through the filler
network. Indeed, it is generally observed that the modulus starts
to deviate from the pure hydrodynamic prediction and increase
quite abruptly above a critical volume fraction, which depends
on the type of fillers. Breaking down such a filler network and/
or particle reorganization under large amplitude strain, leading
to destruction/reformation of the filler network, would then
lead to the observed nonlinear drop of the modulus.1,7,18,19

Note that in both approaches, a fraction of the matrix
(occluded rubber and an adsorbed, immobilized elastomer
layer20), may contribute to the undeformable fraction of the
sample.
In yet another class of approach, it has been claimed that the

behavior of the elastomer matrix itself is strongly modified by
the presence of glassy domains due to a Tg shift of the matrix in
the vicinity of fillers.21−24 It is based on the fact that, even
though the above mechanisms may play a role in the higher
temperature range, they can certainly not explain the very large
maximum of reinforcement R (up to R = 30 at 20 vol % filler
typically) a bit above the elastomer matrix Tg. On the basis of
measurements on well-defined model systems, the reinforce-
ment, including the nonlinear elastic and dissipative responses,
could be successfully modeled by considering an effective solid
fraction including a rigid (glassy) polymer around filler
particles,22,25,26 as measured directly by NMR, and forming
glassy bridges. Direct experimental evidence for glassy layers are
very difficult to obtain, mostly because a small fraction of the
polymer may eventually be affected. One needs to work on very
clean model systems to be able to observe such a small fraction
of the matrix. The subject is still under active debate.

Figure 1. (a) Reinforcement in the linear regime at 10 Hz as a
function of temperature and (b) oscillatory shear modulus G′ as a
function of the strain amplitude γ at 333 K and 10 Hz in unfilled (◊),
SIL (■), and CB (●) filled NR samples with 18.25% volume fraction
of fillers. All samples have roughly the same cross-link density.
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The relative contribution of the various mechanisms
mentionned above may be very different in different circum-
stances, depending on material parameters (matrix cross-
linking, filler system) and on test conditions (essentially strain
amplitude, strain rate and temperature). Indeed, it has been
claimed that glassy bridges may not be the dominant
mechanism in little reinforced systems and/or at temperatures
very far above the Tg of the matrix.27,28

The above discussion indicates that it is still a major issue to
gain selective information on the various mechanisms
contributing to reinforcement in filled polymer melts and filled
elastomers. Note also that the order of magnitude of the
reinforcement which can be provided by the various
mechanisms has been often overlooked.
In a recent paper, we have introduced a new combination of

techniques, in particular mechanical experiments (uniaxial
stretching) combined with in situ X-ray scattering measure-
ments of chain segment orientation and careful measurements
of cross-link densities.29 In a series of unfilled natural rubber
networks with different levels of cross-linking, we have shown
that characterizing segmental orientation allows obtaining a
detailed picture of cross-linking and entanglement effects. We
have been claiming that extending this approach to filled
materials may allow one to get some new insight on
reinforcement mechanisms. This is the purpose of the present
work. We propose to investigate selectively the behavior of the
elastomer matrix in filled systems with this approach.
The proposed approach is based on the very general law

which directly relates the elastic stress in a rubber to network
chain segment orientation. This relationship is the basis of
rubber elasticity and has been shown to be valid in elastomers
and cross-linked gels.30,31 Here we argue that some conclusions
can be drawn on reinforcement mechanisms from checking its
validity in reinforced materials.
As regards the nonlinear behavior observed in large

amplitude oscillatory strain experiments (Payne effect), a
topic which has received a growing interest from the scientific
community,32 it has been generally considered that at higher
strain, beyond filler network breakup, the reinforcement
mechanism is primarily local strain amplification. Concerning
reinforcement, the similarity of the problems of a suspension of
particles in a viscous fluid and of a dispersion of particles in an
incompressible elastic solid has been recognized long ago.33,34

Considerable progress has been made recently on the analysis
of local strain amplification in a filled polymer matrix.35 The so-
called “hydrodynamic amplification factor” is expressed as the
ratio of the viscosity of the composite over that of the pure
matrix (in the case of a viscous liquid or melt), or similarly as
the ratio of the shear storage moduli of the composite over that
of the pure matrix (in the case of an elastic matrix). The strain
amplification factor is expressed as the average strain rate (in a
viscous fluid or melt) or strain (in an elastomer) over that in
the pure matrix. It is shown in Domurath et al. that the
expressions for both quantities are different on a very general
basis.35 Note that the derived expressions hold in the linear
regime. Our experiments shed a new light on this point by
providing a direct experimental evidence of strain amplification
effects at large strain.
The paper is organized as follows. In section 2, we explain

the background of the general approach which has been
developed, based on a combination of different techniques. We
describe the studied materials and experimental techniques in

section 3. Results are presented in section 4 and discussed in
section 5.

2. GENERAL APPROACH

2.1. Background. The approach introduced here is based
on the selective observation of the behavior of the elastomer
matrix. The basic theory of rubber elasticity is based on the very
general law36

σ δ= ⟨ − ⟩k T b u u(3 / ) /3ij i j ijB
3

(1)

where σij is the stress tensor, ui the ith component of the unit
vector u⃗ tangent to a polymer chain (brackets denote statistical
averaging), and b3 the volume of a statistical segment. This is
valid even in the nonlinear regime and expresses that the
physical origin of the stress is entropic, being related to chain
configurational statistics, or equivalently to chain segment
ordering, under an applied strain. In the particular case of
uniaxial extension, eq 1 transforms into the well-known stress-
optical law

σ θ= ⟨ ⟩
k T

b
P (cos )B

3 2 (2)

where the segmental orientation order parameter ⟨P2(cos θ)⟩ is
the average of the second order Legendre polynomial (3cos2 θ
− 1)/2, with θ the angle between any chain segment and the
direction of the strain.
On the basis of classical assumptions on the network

structure, in the linear regime, the average segmental orientation
⟨P2(cos θ)⟩) can then be expressed as a function of the stretch
ratio λ = L/L0

θ νψ λ λ⟨ ⟩ = − −P b(cos ) ( )2
3 2 1

(3)

where ν is the cross-link number density (in m−3) and ψ a
factor which depends on cross-link functionality and displace-
ment under strain: for a tetrafunctional, phantom network
model, ν is half the number density of elastic chains and ψ =
1.31 Combining eqs 2 and 3, one gets a shear modulus G′ =
kBTνψ. For usual densities of about one cross-link per 100
monomers, G′ is about 5 × 105 Pa and would extrapolate to
about 107 Pa at an (unphysical) maximum cross-link density of
one cross-link per monomer.
Note that, in an inhomogeneous (still unfilled) rubber

material, heterogeneity of the local strain or stress may come
from heterogeneities of the cross-link density, resulting in an
inhomogeneous rubbery modulus. The local stress σij varies in
space and is still given locally by eq 1. Then, eq 1 (or eq 2 in
the case of a unaxial tensile test) should remain valid globally
upon volume integration.
Entropic rubber elasticity is very distinct from intermolecular

forces acting in a glassy polymer, which give a shear modulus of
order 109 Pa, that is 2 orders of magnitude larger. Equation 1
corresponds to an ideal situation in which enthalpic
contributions associated with intramolecular interactions
would be completely negligible.31,37 This is generally not
true. Specifically, in natural rubber, the nonentropic contribu-
tion represents a fraction of 0.12−0.19 (according to the
various thermodynamical ways of measuring it) of the total
elastic free energy.31 This rather large contribution is basically
due to the effect of chain stretching on the distribution of
gauche and trans rotamers, which have different energies.
It is not our purpose to discuss this point (specifically the

temperature variation of the modulus of unfilled systems in the
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high temperature range) in details here. We shall rather
proceed by comparing the behavior of filled materials to their
pure (unfilled) counterparts, based on our previous character-
ization of the pure unfilled materials.29 The cross-link density is
used as control parameter. It was shown that the chain segment
orientation (as measured from X-ray scattering) is indeed
proportional to the elongation function λ2 − λ−1 (eq 3) up to
very high extensions, and also to the stress (in a more limited
range of extensions however), with an initial slope independent
of the cross-link density, in agreement with eq 2. Thus, we
consider the set of curves which have been obtained in pure
(unfilled) systems as a reference for the behavior of the
elastomer matrix. This linear relationship between the
elongation function and segmental orientation is a constitutive
law for the considered matrix.
In an elastomer material reinforced by fillers, the constitutive

relationship between strain and segmental orientation (eq 3)
may be used to probe selectively the strain within the elastomer
matrix, by measuring the average segmental orientation during
uniaxial stretching experiments. Then, by measuring the overall
mechanical response (the stress) during the same experiments,
it is possible to discriminate which part of the stress may be
attributed to strain amplification in the matrix. By performing
experiments in a wide range of strain amplitudes, it may be
checked how the part of the stress which is due to strain
amplification depends on the strain amplitude.
The various possible contributions to the stress in a filled

material may be discussed as follows. A plane P within the
sample (Figure 2a) can be divided into surface elements dS

(large with respect to the monomer size) in which the local
stress σij may be entropic (rubbery surface element, index (e) in
eq 4) or nonentropic when P crosses a solid filler (index ( f)).
We suppose also that the response of the elastomer matrix may
be strongly affected and become solid-like (rigid or glassy) in
some strongly confined regions (index (g)), as schematized by
the white zone in Figure 2a. The total force through the plane
is:

∫ ∫ ∫σ σ σ= + +F S S Sd d di
e

ij j
g

ij j
f

ij j
( ) ( ) ( ) (4)

Different situations may occur. In case the filler network does
not percolate (or has been broken by applying a large
amplitude strain), when a filler intersects the plane, the force
Fi can be equivalently computed by integrating along a surface S
moved away from the filler surface, which goes only through
the elastomer matrix (as schematized by the blue surface in

Figure 2a). In this case, the local stress obeys eq 3 through the
whole surface and the overall (macroscopic) stress is still given
by eq 1, integrating along the surface S. On the other hand, if
fillers percolate, either by direct contact or through regions in
which the local response of the polymer is rigid (schematized
by the white zone in Figure 2a), the surface S cannot be drawn
entirely through the elastomer matrix . In this case, the force
will be given by:

∫ ∫δ σ= ⟨ − ⟩ +F
k T

b
u u S S

3
/3 d di

e
i j ij j

g
ij j

B
3

( ) ( ) (5)

and contains some nonentropic contributions (term with index
(g)).
There is yet another possible contribution to the mechanical

response in thin layers confined between filler surfaces. Let us
consider the case of strong confinement, that is, a thin
elastomer layer confined between filler surfaces, such that the
layer thickness d is small compared to the lateral dimension D
of the confining surfaces, and with no slip at surfaces (Figure
2b). Because of the nonslip condition at surfaces, imposing a
tensile stress ϵ (along z) to the layer results in a very large shear
strain γxz ≈ aϵ with a = D/d ≫ 1 a local strain amplification
factor, which will contribute to the elastic energy density by a
term of order ΔF ≈ G′a2ϵ2 where G′ is the shear (elastomeric)
modulus, leading to an effective modulus of order G′a2 ≫ G′.38

This situation is analogous to lubrication flow.39,40 To our
knowledge, the corresponding contribution to reinforcement in
polymer nanocomposites has not yet been explicitly discussed.
As regards segmental orientation, since only the component
⟨uzuz⟩ is measured (other components being averaged to zero
by symmetry arguments), it occurs that overall entropic
elasticity breaks down in this case as well, the stress being
amplified by a factor a as compared to the average segmental
orientation parameter ⟨P2⟩. Note that, depending on lateral
boundary conditions, a local hydrostatic pressure may also be
induced, resulting in an additional nonentropic contribution to
the stress involving the bulk modulus,41 which is much larger
(typically 3 orders of magnitude larger) than the shear
modulus.
Thus, the general law (eq 3) shall be recovered macroscopi-

cally if the whole matrix has locally an entropic response,
without any contribution from glassy or strongly confined parts
(extra term with index (g) in eq 5). Conversely, violation of eq
3 in a reinforced material would imply that the stress is not
related to the properties of the elastomer matrix only and
contains some contribution from percolating, solid or strongly
confined parts of the elastomer matrix. Therefore, checking
whether eq 3 remains valid macroscopically in reinforced
(filled) elastomer materials allows to discriminate the purely
entropic contribution to the mechanical response (this is the
part measured through average segmental orientation) from the
nonentropic contributions originating from direct filler−filler
contacts, glassy bridges or strongly confined layers. It may thus
provide direct experimental discrimination of entropic and
nonentropic reinforcement mechanisms.

2.2. Experimental Approach. Here we propose an
innovative experimental approach in which the various
quantities in eqs 1 and 3, i.e., the stress σ and the segmental
orientation order parameter ⟨P2(cos θ)⟩, are measured
independently and selectively in reinforced elastomer systems.
Referring to the behavior of pure, unfilled elastomer matrices,
in which the relationships contained in eq 3 are effectively

Figure 2. (a) In a material with non percolating fillers, the total force
through the plane P (line) may be computed across a surface S (blue
dashed curve) going only through the elastomer matrix. When fillers
percolate through direct contact or rigid polymer bridges (schematized
as the white region), the surface S necessarily crosses the rigid network
(red dotted curve). (b) In a thin layer confined between two filler
surfaces, strong shear strains γxz appear upon applying a tensile strain
γz.
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established,29 deviations observed in reinforced materials are
analyzed.
In a uniaxially stretched elastomer network, the distribution

of chain segments becomes anisotropic, with more (respectively
less) segments oriented parallel (respectively perpendicular) to
the stretching direction. From this induced anisotropy of the
orientational distribution of chain segments, a segmental
orientation order parameter ⟨P2(cos θ)⟩ may be defined as
an ensemble average over all segments in the elastomer matrix.
Because of this induced average segmental orientation, the
amorphous X-ray scattering halo becomes anisotropic, with
more (less) intensity in the direction perpendicular (parallel) to
the stretching direction. The segmental orientation order
parameter ⟨P2(cos θ)⟩ may be directly measured from the
observed anisotropy, with a constant proportionality factor (not
calibrated here) related only to the atomic structure of
monomers.42,43

Cross-link densities ν in the elastomer matrices are measured
in both pure and reinforced materials by proton Multiple-
Quantum (MQ) NMR experiments,44 in which residual dipolar
couplings between protons, partially averaged under the effect
of the restriction on chain segment reorientation due to cross-
links and entanglements,45 are determined quantitatively. For
each chain, a nonzero dynamical average is obtained, with an
angular part (dependent upon the local orientation of the
chain) and a magnitude, dependent upon the local degree of
stretching. When averaged over the ensemble of polymer
chains, the local anisotropy of orientational motions may be
described by a nonzero dynamical average P̅2 of the second
order Legendre polynomial for the polymer backbone
orientation. In other words, in NMR, individual chain segment
orientation is measured and its magnitude then averaged over
all network chains. The dynamical average P̅2 gives directly the
average cross-link density ν with a proportionality factor which
has been numerically calibrated.46

The overall NMR signal is the superposition (sum) of
contributions from all regions in the matrix where the cross-link
density may be considered to be homogeneous. The overall
average cross-link density ν is obtained with high accuracy.46

Moreover, cross-link density distributions are obtained by
suitable data analysis.44,46,47

It is important to emphasize once again that P̅2 and ⟨P2(cos
θ)⟩ are distinct quantities. P̅2 is a dynamical average measured
by NMR in the relaxed state, whereas ⟨P2(cos θ)⟩ is an overall
(ensemble) average anisotropy, which is zero in an isotropic
system (that is, in the relaxed state) and becomes nonzero
under stretching only. At high temperature (so that local
reorientational motions are fast) both quantities are functions
of the cross-link density through arguments based on chain
statistics in rubber elasticity theory.

3. MATERIALS AND TECHNIQUES

The investigated elastomers are cis-1,4 polyisoprene (natural rubber
(NR) of grade SMR 5L with DSC measured Tg = 213 K) reinforced
with 18.25 vol % of (i) precipitated silica (SIL samples, Z1165MP
from Solvay, 160 m2/g) treated with bis(triethoxysilylpropyl)-
tetrasulfane (TESPT), which provides covalent silica/elastomer
coupling; and (ii) carbon black (CB samples, N234 from Cabot,
120 m2/g). Samples were mixed and sulfur vulcanized following
standard procedures. The mixing procedure consisted of one phase in
an internal mixer during which rubber, fillers, TESPT (in case of silica
fillers), vulcanization activators (4 g of ZnO and 2 g of stearic acid per
100 g of rubber) and an oxidation preventor were blended. Curing
agents (sulfur (S)) and accelerators (N-cyclohexyl-2-benzothiazole-

sulfenamide (CBS) and 0.2 g of tetrabenzylthiuram disulfide
(TBzDT)) were added on an open roll mill at low temperature to
avoid premature cross-linking. Three CB and three SIL samples with
different cross-link densities ν were prepared by changing the sulfur
(S) content between 0.5 and 2.5 wt %, with a constant ratio CBS/S =
1.3 (for SIL samples) or CBS/S = 1.0 (for CB samples), CBS being
the primary vulcanization accelerator. Moreover, a set of six pure
(unfilled) NR samples with different cross-link densities prepared in
similar conditions were used for comparison.29 The main formulation
ingredients of all studied samples are summarized in Table 1.

Proton MQ NMR experiments were carried out at 343 K (that is,
well above Tg) on a Bruker minispec mq20 spectrometer operating at
0.5 T with 90° pulses of down to 2 μs and a dead time of 15 μs. Well
established procedures were used to obtain and analyze the normalized
proton double quantum (DQ) signals in order to obtain the
distribution of cross-link densities in all studied samples.44 Oscillatory
shear moduli G* were measured in as-prepared samples (thickness 2
mm) at 333 K and frequency 10 Hz on a Metravib VA 3000 DMA.
Sweeps of shear amplitude γ increasing from 0.1% up to 50% and then
decreasing back to 0.1% were applied. Storage moduli G′ were
measured during the return sweeps. Average chain segment orientation
under tensile strain was measured at 298 K with a homemade uniaxial
stretching device mounted on a rotating anode X-ray generator,
described in details elsewhere.29,43 The true stretch ratio λ = L/L0 at
X-ray beam spot is measured simultaneously both with an optical
camera and using the variation of sample thickness measured through
the variation of X-ray absorption. 2D scattering patterns were recorded
in samples stretched in situ as a function of λ and the anisotropic
intensity in the amorphous halo (with more (respectively less)
intensity in direction perpendicular (respectively parallel) to the
stretching direction) was fitted as a function of the azimuthal angle φ
with the expression A + Bcos2φ (where A is corrected for air
scattering). The anisotropy of the scattered intensity may be
characterized by a parameter ⟨P2⟩RX = 2B/(15A + 10B), which, as
quoted above, is proportional to ⟨P2(cos θ)⟩.

29,43

The dispersion states of the fillers were characterized by electron
microscopy and small angle scattering experiments. Representative
TEM and SEM micrographs of the same silica-filled samples were
shown in ref 48.

4. RESULTS

Reinforcement curves as a function of temperature are shown
in Figure 1a for CB and SIL samples with roughly the same
cross-link densities (samples with 1.5 phs S normalized by the
pure matrix with 1.0 phr S, cross-link densities are reported in
abscissa in Figure 3). The drop of the G′ modulus in the range
γ = 0.1−50% is shown in Figure 1b for CB and SIL samples

Table 1. List of the Studied Samplesa

denomination NR SiO2 CB S CBS

unfilled 100 0.5 0.66

100 1.0 1.33

100 1.5 2.0

100 1.5 2.0

100 2.0 2.66

100 2.5 3.33

SIL 100 50 0.5 0.66

100 50 1.5 2.0

100 50 2.5 3.33

CB 100 45 0.5 0.5

100 45 1.5 1.5

100 45 2.5 2.5
aNR denotes natural rubber SMR 5L, SiO2 denotes Z1165MP silica,
CB denotes N234 carbon black. S is the sulfur and CBS the
accelerator. All amounts are expressed in phr (g per 100 g of rubber).
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with same cross-link densities. The modulus of a pure, unfilled
sample, also shown in Figure 1b, is roughly constant in this
range. Storage moduli at strain amplitudes 0.1% (G′0) and 50%
(G′50) are shown in Figure 3 as a function of the average cross-
link density ν (measured by NMR). In unfilled systems, the
modulus is proportional to the cross-link density and
extrapolates to nearly zero modulus at ν = 0, which indicates
that roughly the same amount of effective (physical and
chemical) cross-links are detected in both NMR and mechanics,
in this range of strain amplitudes.29 The slope of G′ vs ν (1.7 ×
109 Pa g mol−1) corresponds almost quantitatively to the
prediction of eq 3 (2.4 × 109 Pa g mol−1). In reinforced
systems, the values of G50′ are still proportional to the cross-link
density, with a slope about twice as large however (i.e., with a
constant reinforcement factor of about two). Conversely, G0′ is
not proportional to ν. Thus, we argue that different
mechanisms may be involved in reinforcement at very small
strain amplitudes (linear regime, γ = 0.1%) and at
intermediate/large amplitudes (γ = 50%).
The curves of ⟨P2⟩RX vs the elongation function λ2 − λ−1 are

shown in Figure 4a for three pure and reinforced systems with
similar cross-link densities. Above the onsets of strain-induced
crystallization (SIC, indicated by arrows), unfilled systems show
a roughly constant orientation of the amorphous phase in
equilibrium with crystallites,43 while in filled materials ⟨P2⟩RX
further increases due to a more inhomogeneous crystallization
process. Below the onsets, ⟨P2⟩RX varies linearly with λ2 − λ−1

in a wide range of strain values (from 0% up to 250% in
unfilled, from roughly 15% up to 120% in filled materials) in
agreement with eq 3. The slightly nonzero intercepts of the
curves at λ2 − λ−1 = 0 correspond to experimental background.
The ⟨P2⟩RX curves stay perfectly linear down to λ2 − λ−1 = 0.
Interestingly, prior to crystallization onsets, ⟨P2⟩RX curves do
not show any significant upward deviation related to finite
chain extensibility, either for the pure or the filled materials.
The slopes S2 of ⟨P2⟩RX vs the elongation function λ2 − λ−1

are shown as a function of ν for all systems in Figure 4b. In all
systems, S2 shows an excellent linear correlation with ν (as
predicted by eq 3), with a nonzero intercept at origin however.
This nonzero intercept corresponds to effective constraints
(entanglements) detected by NMR in addition to chemical
cross-links and not detected in X-ray measurements, due to the

different characteristic frequencies, since X-rays experiments are
done under quasi-static mechanical loading. This means that
the measured value of S2 may effectively be zero when
extrapolated to zero chemical cross-link (i.e., in the molten
state). It indicates that part of the constraints which are
effective on the time scales of NMR experiments (of order 10
kHz) and in dynamical mechanical measurements (10 Hz) may
relax on longer time scales. Note also that X-rays measurements
involve medium to large strain values while NMR experiments
are done in the relaxed state.
To further illustrate the strong deviation between the

mechanical response and the segmental orientational response,
both the storage moduli G′ and S2 slopes are plotted as a
function of the elongation function λ2 − λ−1 in Figure 5 for a
representative pair of samples, after being normalized by the
corresponding values obtained in the pure system with the
same cross-link density. SIL and CB samples with 1.5 phr sulfur
have been used, data are normalized with the unfilled sample
with 1.0 phr sulfur, which has roughly the same cross-link
density (see Figure 3). For the segmental orientational
response S2, constant values corresponding to the slopes in
Figure 4a have been reported. This figure is only another way of
representing the difference between the mechanical response
and the segmental orientational response. It shows explicitly
that, while the modulus measured in dynamical mechanical
measurements decreases as the strain amplitude increases
(Payne effect), the response of the elastomer matrix in terms of
average chain segment orientation under stretching measured
by X-ray scattering stays constant.
In reinforced materials, the amorphous phase orientation is

increased by a roughly constant proportionality factor (of order

Figure 3. Storage shear moduli G0′ (full symbols) and G50′ (empty
symbols) for the 12 different studied samples, as a function of the
cross-link density ν measured by NMR: unfilled (◊), SIL (□), and CB
(○) samples.

Figure 4. (a) Amorphous orientation parameter ⟨P2⟩RX measured by
X-ray scattering as a function of the elongation function λ2 − λ−1 for
systems with the same cross-link density: unfilled (◊), SIL (■), and
CB (●) samples. Crystallization onsets are indicated by arrows. (b)
Slopes S2 of ⟨P2⟩RX as a function of the cross-link density ν measured
by NMR.

6



1.8 for CB and 2 for SIL) with respect to an unfilled system
with the same cross-link density. This factor corresponds
almost quantitatively to the reinforcement factor observed for
G′50 (or equivalently for the stress in the 50% strain amplitude
range) in Figure 3.
Thus, relating local chain segment orientation to local strain,

according to eq 3, we find that the general stress−strain
constitutive law eq 2, based on entropic elasticity, remains valid
in reinforced materials, in this range of strain amplitude (about
50%). This demonstrates that the predominant reinforcement
mechanism in this range of strain amplitude is the local strain
amplification in the bulk elastomer matrix. Note that downward
shifts observed in critical strain at crystallization onset in
reinforced materials are also generally interpreted as due to
local strain amplification.49

The local strain amplification interpretation of reinforcement
at large strain is directly evidenced by plotting the moduli
against the slopes S2 for all samples with different cross-link
densities (Figure 6).
In the unfilled systems, evidently there is still a linear

correlation between G′ and S2 with a small nonzero intercept

on the modulus axis (corresponding to the nonzero intercept in
Figure 4b). The value of the modulus extrapolated at S2 = 0 is
of order 2 to 5 × 105 Pa, which is coherent with a contribution
of entanglements to modulus. In reinforced systems, G50′ still
varies linearly with S2 and the data are very close to that of pure
systems. This illustrates that the increase of G50′ with respect to
the pure systems (reinforcement at this strain amplitude) may
be almost entirely interpreted as due to strain amplification
already included in S2 values. The small difference (constant
upward shift of G50′ data in filled samples compared with
unfilled ones) may be due to other mechanisms (which are at
play at small amplitudes, see below) still contributing to G50′ . It
could also be related to different mechanical histories: shear
modulus is measured on as-prepared samples whereas the
amorphous orientation parameter was measured on pre-
stretched samples (3 cycles at 350%).
In the linear small strain (≲ 0.1%) regime, G0′ values are well

above G50′ and do not vary proportionally to the slopes S2 as the
cross-link density varies. Thus, these values do not apparently
follow the general constitutive law eq 2. Note again that this
increase in G0′ values is reversible.

5. DISCUSSION

It has been shown that the increase of shear modulus G50′ at
medium/large strain amplitudes in the reinforced NR materials
studied here may be almost entirely interpreted as due to strain
amplification. Conversely, the modulus G0′ in the low strain
regime is much larger, and it is not proportional to the cross-
link density neither to the chain segment orientational response
S2, indicating a breakdown of the general stress-optical law, eq
2, in this range of strain amplitudes.
The different reinforcement mechanisms presented in

section 2.1 may now be discussed in the light of these
experimental results. The increase of the G0′ modulus might be
related to an increase of the elastomer matrix modulus, related
to some regions in the matrix with an effectively larger cross-
link density, due, e.g., to enhanced topological constraints in
the vicinity of filler surfaces.9,10 In order to account for an
increase of modulus by a factor of about 3 in the linear regime,
assuming that an overall volume fraction 20% of the elastomer
matrix (in the vicinity of fillers) would be affected, then the
effective local cross-link density should typically be increased by
a factor about 10−15, with this factor increasing even more as
the affected volume fraction of the matrix would decrease. We
have checked this possible local increase in cross-link density by
NMR. Distributions of cross-link density in unfilled and filled
samples are shown in Figure 7. Within the resolution of the
experiment, we find that cross-link density distributions are the
same in both unfilled and filled samples with same average ν
value, as already reported in similar and other systems.50,51 In
Figure 7, we purposely show a large range of cross-link densities
in abscissa, to illustrate that no contribution with increased
cross-link density up to ten times the measured average value
(which, on the examples shown, is about 3.5 × 10−4 mol·g−1) is
observed. Moreover, according to eq 3 and related discussion, a
local increase in cross-link density would give an additional
chain segment orientation, i.e. an increased slope in the ⟨P2⟩ vs
λ2 − λ−1 curves at very small strain values, which is not
observed (Figure 4a).
Let us now discuss the contribution from local shear

associated with strong confinement (lubrication effects). It
has been argued in section 2.1 that this effect would indeed give
an amplified mechanical response G′, relative to the orienta-

Figure 5. Storage shear moduli (full symbols) and slopes of the
segmental orientation S2 (empty symbols) as a function of the tensile
strain for two representative samples (■, SIL; ●, CB), normalized by
the corresponding values in the unfilled sample with the same cross-
link density. For the normalized moduli, γ is the amplitude of the
oscillatory strain, for the normalized slopes, γ = λ − 1.

Figure 6. Storage shear moduli G0′ (full symbols) and G50′ (empty
symbols) for the 12 different studied samples, as a function of the
slope S2 of ⟨P2⟩ measured by X-ray scattering: unfilled (◊), SIL (□),
and CB (○) samples.
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tional response S2. However, the effective modulus implied in
this mechanism still involves the shear modulus, amplified with
respect to the overall (macroscopic) modulus by a factor
depending on local confinement, as discussed in section 2.1.
Therefore, the associated overall (macroscopic) resulting
modulus should still be proportional to the cross-link density,
or, more precisely, G0′ values in Figure 6 should extrapolate to
the roughly same ordinate as G50′ values at S2 values
extrapolated to zero, contrary to what is observed. In other
words, equivalently, it does not explain the extrapolated
intercept at ≈2 MPa of G0′ as the cross-link density ν → 0.
Thus, we argue that the amplification of the modulus G0′ should
not be due to this mechanism.
Finally, the results reported here indicate that the extra

reinforcement observed in the linear regime, which corresponds
to a breakdown of the general elastomeric constitutive equation
eq 3, is due to some nonentropic contribution to the stress−
strain constitutive law. It demonstrates that part of the stress is
supported by a percolating network of rigid or strongly
confined component at small strain amplitude, and that this
rigid network component is broken at large strain amplitude,
the stress then being entirely supported by the elastomer matrix
with an almost fully entropic response. This idea has been
generally accepted already, based on indirect, model dependent
analysis of mechanical data. The experiments presented here do
not give direct evidence for a particular mechanism responsible
for this rigid percolating network. We claim that we bring a
new, direct experimental evidence of that in this work. These
rigid elements may be either direct contacts between fillers, or
glassy polymer bridges in between neighboring fillers. It is
important to note again that these solid-like contributions to
the mechanical response are reversible.

6. CONCLUSION

What has been shown here is that, at medium/large strain
amplitudes, mechanical reinforcement observed in elastomers
filled with carbon black or precipitated silica is mostly due to
chain segment overorientation (or equivalently strain amplifi-
cation) in the bulk elastomer matrix. This has been
demonstrated quantitatively by correlating mechanical data to
chain segment orientation measured by X-rays, taking into
account the effective cross-link density measured by NMR. In
the linear regime (small strain amplitudes), the larger increase

of modulus is related to other, nonentropic (interfacial)
reinforcement mechanisms, related to strong confinement,
which are active even at the temperature studied here,
corresponding to Tg + 120 K. It follows that, in the linear
regime, the modulus is not proportional to the cross-link
density of the matrix. Therefore, it cannot be expressed as a
separable formula of the form G0′ = Gpure′ f(Φ), with Gpure′ the
elastic modulus of the elastomer matrix (at the same cross-link
density) and f(Φ) a reinforcement factor depending only on
the reinforcing filler system, namely the volume fraction,
structure, morphology and dispersion state of fillers. Thus, in
the linear regime, the constitutive equation of the elastomer
matrix cannot be considered to be unaffected by the presence
of fillers. We may expect that these effects would be even more
pronounced at lower temperature, when one enters a regime of
higher mechanical reinforcement, i.e. closer to the maximum of
the reinforcement curve as shows in Figure 1.
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