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Revealing the structure of a granular medium through ballistic sound propagation
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Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne, France

(Dated: May 15, 2014)

We study the propagation of sound through a bidimensional granular medium consisting of photoelastic disks,
which are packed into different crystalline and disorderedstructures. Acoustic sensors placed at the boundaries
of the system capture the acoustic signal produced by a localand well-controlled mechanical excitation. By
compressing the system we find that the speed of the ballisticpart of the acoustic wave behaves as a power law
of the applied force with both exponent and prefactor sensitive to the internal geometry of the contact network.
This information, which we are able to link to the force-deformation relation of single grains under different
contact geometries, provides enough information to revealthe structure of the granular medium.

PACS numbers: 45.70.-n, 43.25.+y, 46.40.Cd, 64.70.qj

Besides its practical and industrial relevance, granular ma-
terials have lately gained a lot of attention from the scien-
tific community [1], as they have become simplified mod-
els of complex phenomena: jamming transition [2–4], self-
organized criticality [5], earthquake dynamics [6, 7], etc. Be-
ing able to monitor the structure of the system in a tabletop
experiment is one of the advantages of these simplified mod-
els, and (especially in the case of earthquakes) acoustics is of-
ten the most appropriated tool of analysis. However, granular
materials are still reticent to leave clear fingerprints on acous-
tic waves [8–10]. This “misbehavior” is directly related tothe
fact that, in a granular medium, loads are transferred through
contact mechanisms between neighboring particles creating
force chains [11]. These chains are responsible of a huge de-
gree of heterogeneity inside the system [12], which increases
the dispersion of the signal. It is also known that acoustic
waves favor speed and amplitude along force chains [13]; and
making the scenario more complex, contacts can activate and
deactivate during the passage of the acoustic wave [14, 15]
amplifying its attenuation.

In this Letter we show that valuable information of the in-
ternal structure of a compressed granular medium can be ex-
tracted by studying the ballistic (i.e., non dispersive) part of
the sound wave. This contrasts with techniques based on the
multiple–scattering of acoustic waves that have received spe-
cial attention in recent years [16–20]. Unlike the diffusive
part of the signal, the ballistic part provides a more direct
and simpler analysis of the granular structure. In strained
granular materials, the speed of soundc has a nonlinear be-
havior with the applied forceF asc = KFα [21, 22]. By
studying the compression of granular materials with different
crystalline structures we found that the exponentα depends
on the contact number of the grains, while the prefactorK
brings information about the anisotropy of the medium. When
compressing disordered structures we can observe different
scalings, which indicates a change in the internal structure of
the medium. Being able not only to detect a change in the
structure of the granular system, but also to recognize its na-
ture, is of great interest when trying to predict abrupt events
denominated avalanches [23–25], earthquakes [6], or unjam-
ming events [3, 26], according to the subject of the study.

The experimental setup consists on a monolayer of disks
confined into a rectangular cell placed vertically (see Fig.1).

This cell has an initial size of162 × 96 mm2 (W × H) and
3.6 mm thickness. The surrounding walls are built in the same
material as the grains. The bottom and lateral walls are fixed,
while the upper one is mobile allowing the compression of
the granular medium. In order to avoid 3D effects the cell
is confined between two acrylic plates. The whole setup is
held in an external metallic frame. We use cylindrical grains
of 6.4 mm diameter (d) and 3.5 mm thickness (L). These
disks are made ofDurus White 430and have been generated
in a Objet303D–printer. Profile measurements of the surface
roughness of the printed grains give a peak-to-peak maximum
value of 25µm on the curved side of the cylinders. The zero-
frequency Young modulus ofDurusmaterial isE ≃ 100MPa.
The translucent and birefringent character of the grains allows
the visualization of the stress inside the disks when placing the
experimental setup between two circular polarizers (Fig. 2).
We take images of the experiment with aNikon D700(0.045
mm/pixel resolution).

In order to set the structure of the packing we have designed
specific boundary conditions. This boundary condition con-
sists of a row of half grains separated by a specific gap be-
tween them and fixed to the bottom wall [27]. We have stud-
ied three different crystalline structures (Fig. 2): squared at
45◦ (S45), squared at90◦ (S90), hexagonal at60◦ (H60), and
different disordered structures (D). For comparison, we have
also performed an experiment in a one-dimensional configura-

FIG. 1. Sketch of the experimental setup.Sv andSh are acoustic
sensors placed on the top wall and lateral walls respectively.
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FIG. 2. Detail of the granular monolayer for the four different ge-
ometries studied:a S45, b H60, c S90, andd D. By placing the setup
between two crossed circular polarizers it is possible to identify the
contacts.

tion (W = d [22]). The disordered structures are obtained by
pouring the grains randomly between the acrylic plates. Fig-
ure 2d shows the disposition of the grains (see also a video
showing the contraction of the system as the force increases
[28]).

The granular medium is excited mechanically by a thin
metallic rod connected to a loudspeaker (see Fig. 1). The
rod moves freely through a hole at the center of the bottom
wall and hits one grain. This generates an acoustic wave
of about 4 kHz frequency with a pressure amplitude much
smaller than the confining pressure to ensure the propaga-
tion of linear acoustic waves. For this frequency, the speed
of sound inDurus is ≃ 1200 m/s. The acoustic signal travels
across the medium (see also a video showing the propagation
of the acoustic wave [28]) and is recorded by six acoustic sen-
sors (CTS Valpey Corporation VP-1.5) that are placed on the
lateral and upper walls of the cell. Due to the experimen-
tal configuration we are only measuring compressional waves
(P-waves) which are the fastest and the first to be recorded. In
order to induce a deformation in the granular system, we set a
jack between the upper wall of the cell and the metallic frame.
This jack is connected to a force sensor (Interface, SML-300
with a stiffness of1.75× 107 N/m) that measures the applied
force over the grains.

We proceed as follows: first we apply a given deforma-
tion over the system. Then, we excite the granular medium
by sending an electrical signal to the loudspeaker. The emit-
ted acoustic signal and the applied force are recorded continu-
ously by aNI-USB-6366card at a frequency of2 MHz during
1.1 s (150 ms before and950 ms after the emission). We have
repeated the experiments with the same conditions to check
the reproducibility of the results. Finally, for each acoustic
excitation we record the images of the setup in order to ex-
tract the contacts between grains.

In order to extract the time of flight, we perform a spectral
analysis of the recorded signal. First we normalize the acous-

200 400 800
100

200

400

800

30 60 100 200
100

200

400

c 
(m

/s
)

100 200 400 800
100

200

400

F (N)

c 
(m

/s
)

10 20 40 100 200 400
100

200

400

F (N)

10
1

10
2

10
3

F (N)

c 
(m

/s
)

100 200 300

0

0.5

1

F (N)

c v / 
c h

200 400 600 800

0

1

F (N)

c v / 
c h

100 200 300

0.5

1

1.5

F (N)

c v / 
c h

b: H60a: S45

d: Dc: S90

0.5

FIG. 3. Scaling of the sound speed as a function of the appliedforce
for the different structures studied. Filled symbols and open symbols
correspond to measurements at the top wall (cv) and lateral walls
(ch) respectively. The inset ina,b, andd showcv/ch. The inset inc
corresponds to the speed of sound through a one dimensional chain
of cylinders. The straight lines in the figures correspond toguides to
the eye for two different power-law behaviors: (- - -) correspond to
F 0.16 and (-· -) toF 0.5.

tic signalp(t) by its energy:P (t) = p(t)/
∫ 1.1s

0
p2(t) in order

to have comparable amplitude levels for all the sensors. Sec-
ond we perform the power spectrum over temporal windows
of 64µsSti(f) = P̃ti(f)P̃ti(−f), whereP̃ti(f) corresponds
to the Fourier transform ofP (t)− < P (t) > in the temporal
window centered atti. Finally we sum the spectral amplitudes
over all the frequenciesAti =

∑

f Sti(f). We consider that
the acoustic pulse has arrived whenAtr > 10−4 (threshold is
independent of the sensor). So the speed of sound is obtained
asc = Deuc/∆t, whereDeuc corresponds to the euclidean
distance between the source of the wave and the acoustic sen-
sor,∆t = tr−t0 , andt0 corresponds to the impact time. This
method provides more accurate results than a direct threshold-
ing since it takes into account all the frequencies and detects
the quickest one (independent of dispersive effects).

Figure 3 shows the speed of sound as a function of the ap-
plied force over the system. As expected, we observec ∼ Fα.
We point out the existence of two different sets of results. For
experiments performed on structuresS45andH60 (that have
4 contacts per grain) we obtainα = 0.16 ± 0.03 while for
S90(2 contacts per grain) we getα = 0.50 ± 0.06, that is
the same scaling observed for the one–dimensional case (in-
set in Fig. 3c). The result for the one-dimensional chain of
cylinders differs from the one reported in [22]. It is impor-
tant to point out the existence of a preliminar regime at low
F (evident in structureH60), that corresponds to the progres-
sive activation of contacts in the granular lattice. In the case
of disordered configurationD we observe the two scaling be-
haviors. For low loadings we observe the 0.5 exponent, and at
larger forcing we recover the 0.16. In the case shown in Fig.
3d, the crossover that separates both regimes appears at 80 N.
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This crossover does not appear at the same applied force for
different experiments, and it is very dependent on the initial
configuration of the specific experiment, which is a common
issue in granular media [1]. A special case of study are the
results obtained with a disordered geometry. In this scenario
α crosses over from0.5 to 0.16.

The propagation of sound in granular materials is governed
by the contact mechanics of its grains [29]. By analogy with
the discrete model of phonons in a solid [30], we consider that
the sound speedc in a chain of grains of stiffnessκ, massm,
and distance between contactsdc is:

c =
√

κ/m dc cos(πdc/λ) ≃
√

κ/m dc (1)

in the regime where the wavelengthλ is large compared to
the grain size. This approximation is justified in our experi-
ments since the smallest value ofλ ≃ 200 m/s/4 kHz≃ 0.05
m, givescos(πdc/λ) ≃ 1 with less than10% error. A sim-
ilar scaling was already proposed by previous authors (see
[31] and references therein). In this caseκ can be written
asdf/dδ, wheref corresponds to the contact force between
grains, andδ is the deformation [32]. In order to re-create
the contact mechanics of the experiments shown in Fig. 3,
we have performed experiments where a single grain is com-
pressed between two flat plates and between twoπ/2-wedges
(see Fig. 4), made of duralumin, that provide 2 and 4 flat
contacts to the grain respectively. Figure 4 shows the force–
deformation curves for a single cylindrical grain in the two
different contact geometries. In the 2 contacts geometry the
force–deformation curve shows a power-law regime with an
exponentβ ≃ 3/2 for small forces, with a crossover to an
exponential behavior for large forces. In the 4 contacts ge-
ometry, the power law relation is more robust and spans for
a larger range of deformations. In this case we extract the
value of the exponentβ = 1.5 ± 0.3 (see inset in Fig. 4). A
very similar value for the power law exponent has been al-
ready reported for viscoelastic cylinders, and deviation from
the expected value [28] has been attributed to the role of asper-
ities (see Supplementary Information of [4]). In order to ana-
lyze the dependence of these scalings on the chosen material,
the same measurements have been performed on cylinders
with the same dimensions but made ofreinforced rubberand
PDMS[28]. Grains made with different materials follow the
same behavior, which indicates that the elastic propertiesof
the cylinders prevail in this force–deformation relation.With
this information and usingκ = df/dδ andc ∼ κ1/2, we can
calculate theα exponent (assumingF ∼ f ). If f ∼ δβ with

an exponentβ ≃ 3/2 thenc ∼ F
β−1

2β ∼ Fα with α ≃ 1/6;
while a relationf ∼ eδ will give c ∼

√
F , thenα = 1/2. As

the distribution of forces is highly inhomogeneous (even ina
regular structure [12]), and force chains dominate the dynam-
ics, in the 2 contacts geometry we do not notice the low forces
regime with a power law exponent 1/6 and only detect the ex-
ponent 1/2, associated with the exponential part in the force-
deformation relation of Fig. 4. This explains also the exponent
at low force observed in Fig. 3d. In the case of 4 contacts, the
normal force per contact for a given applied force per grain
will be significantly lower than in the 2 contacts case, which
increases the possibility to observe the power law regime in
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FIG. 4. Measured force-deformation relation for a single grain in
a 2 contacts geometry (2C) and in a 4 contacts geometry (4C). The
power lawf ∼ δ3/2 is represented by discontinuous lines while the
exponential lawf ∼ eδ is represented by a dot-dash line.δ is the
total deformation of the compressed grain (δ = 2δ1).

the force-deformation relation leading to the power law expo-
nent 1/6 in Fig. 3. The inverse transition observed in Fig.3d
compared to the transition observed in Fig. 4 when increasing
the applied force corresponds to the progressive shift fromthe
large force exponential regime for a 2 contacts configuration
to the large force but still power law regime for a 4 contacts
configuration that can be observed at the same applied force.
This evolution of the grain coordination number is discussed
in more detail below. From that perspective, the experimental
observations plotted in Fig. 3 are in perfect agreement with
the force-deformation relations of single grains. From Fig. 4
we find that the effective stiffness varies between3×105 N/m
and2 × 106 N/m. From Eq. (1) we get:c ≃ 370 − 860 m/s,
which corresponds rather well to the measured range of sound
speeds.

This analysis points out that the exponentα appears to
be directly related with the number of contacts between the
grains in the medium (S90and one-dimensional have 2 con-
tacts per grain andα ≃ 0.5, while S45andH60 have 4 con-
tacts per grain andα ≃ 0.16). To confirm this in the case of
the disordered configuration (Fig 3d), Fig. 5 shows the num-
ber of grains that have 2, 3, and 4 contacts, as a function of
the applied force. In order to extract this information we scan
the image of the whole system with a mask consisting in a
disk with the size of the grains, and the position of the grains
centers are localized when the correlation between the mask
and the image are maximal. Once the centers are localized,
we can extract the image of each single grain and extract the
grey levels in polar coordinates. By averaging the grey lev-
els in the radial direction we obtain the representation of grey
levels as a function of the polar angle. The number of peaks,
above a given threshold, tells about the number of contacts per
grain. This plot shows that at 80 N the number of grains with
4 contacts start to increase from 0 to20%. This crossover co-
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FIG. 5. Fraction of grains with 2, 3, or 4 contacts in the experi-
ment carried out withD configuration (same as Fig. 3). The vertical
discontinuous line marks the crossover between the two power-law
regions observed in Fig. 3. The total number of contacts normalized
by its value at the highest force shows a continuous trend without any
abrupt change of behavior at 80N.

incides with the change in theα exponent, indicating that the
change on the scaling ofc with F corresponds to a change in
the coordination number of the grains involved in the path of
the sound wave.

Figure 3b also shows the existence of a vertical shift in the
c vs.F curve between sensors placed in the top part and the
lateral walls. This effect is clear for the case ofH60 and does
not occur in theS45configuration. The insets of Figs. 3a, b, d
display the ratios between the speed of sound measured on the
top partcv and the side wallsch (we do not show results for
S90because the values ofch are negligible compared tocv).

Since the sound propagation is governed by the contact me-
chanics between grains, the absolute value of the recorded
signal will be also affected by the relative orientation of the
acoustic source and the sensors, but more important, by the
anisotropy of the contact distribution for single grains. In a
regular configuration, the distancedc between contacts in the
vertical and horizontal directions are proportional tod sin θ
andd cos θ, respectively, whereθ is the angle between neigh-
bors at different rows (see Fig. 2). Then, from Eq. (1), the scal-
ing of the vertical and horizontal sound speed arecy ∼ sin θ
andcx ∼ cos θ. Finally, the speed of sound recorded by a sen-
sor placed at a horizontal angleη with respect to the source
follows:

cη ∼ sin θ sin η + cos θ cos η. (2)

Since the angles of the top and lower lateral sensors are
ηv ∼ 70◦ andηh ∼ 20◦ respectively, the ratio of the velocities
correspond to1 for S45(θ = 45◦) and1.3 for H60 (θ = 60◦),
which is consistent with the measured values plotted in the
inset of Fig. 3 where we observe0.93 and1.33 for S45and
H60 respectively. The ratiocv/ch for the disordered config-
uration (Fig. 3d) is evolving towards a more stable geometry
(“H60-like”) at the crossover force80 N.

Finally, we are able to identify the “main” coordination

number of a granular matter with ana priori unknown struc-
ture by studying the scaling of the sound speed as a function
of applied loads (we use the word “main” to refer to the chain
that supports a stronger load favoring the propagation of the
sound wave). This is due to a different behavior of the force–
deformation response of single grains under different contact
geometry. In contrast with previous works, we observe that
the relation between the force and deformation of two cylin-
drical grains in contact with parallel axis crosses over from
a power-law to an exponential law when increasing the ap-
plied load. This last result is supported by the observationof
the scalingc ∼ F 1/2. The relation of force and deformation
for the present contact geometry with purely elastic cylinders

has the formδ1 = 1−ν2

πE
f
L

[

ln
(

4πERL
(1−ν2)f

)

− 1
]

[29]; whereδ1
is the compressed distance due to a single contact,ν corre-
sponds to the Poisson’s ratio (typicallyν ≃ 0.4 for polymeric
materials [33]), andR correspond to cylinder radius. This
equation can be written in an adimensional form by defining
f̃ = f(1 − ν2)/(4πERL) and δ̃ = δ1/(4R). So, if we per-
form a Taylor expansion of this relation around an imposed
forcef0, the resulting expansion can be written as

δ̃ = −
[

f̃0 + 2f̃0 ln f̃0

]

−
(

3 + ln f̃0

)

ǫ+ f̃0 ln(f̃0+ ǫ), (3)

whereǫ = f̃ − f̃0 [28]. Equation (3) shows two different
regimes: for low applied forcesf0, the term(3 + ln f̃0)f̃
dominates and that would correspond to a linear behavior for
cylindersf ∼ δ, (however, this is true only for extremely low
forces and can be approximated as a power law at larger ones
[28]); whereas for largerf0, the termf̃0 ln f̃ dominates and
that would correspond to an exponential lawf ∼ eδ. This two
regimes are separated by a crossoverfc given by the weight of
the prefactorsfc = e−44πERL/(1− ν2) [28]. Even though
fc does not match perfectly with the experimental results, Eq.
(3) gives an explanation for the observation of an exponen-
tial regime with purely elastic considerations. We believethis
discrepancy infc relies in the inherent viscoelasticity of poly-
meric materials and in a finite length of the cylinders. We
also would like to point out that Eq. (3) is derived from a
model defined for small deformation. However, the behav-
ior of the force-deformation relation given by the model fora
range of forces(δ/R)>0.1 predicts an exponential law which
is qualitatively what is observed in the experimental results
[28]. This transition may correspond to the global mechanical
response that changes the force-deformation relation froma
power law to an exponential one in a smooth contact between
cylinders. The exponent value 1.5 in the force-deformation
relation may correspond to the local effect of spherical-like
asperities, which can play a role for deformations up to 50
times the amplitude of the roughness [22]. However, this ef-
fect does not seem to affect the transition to an exponential
behavior which may correspond to a global deformation of
the grain.

To sum up, we have performed an experiment with photoe-
lastic disks where by analyzing the ballistic part of an acoustic
signal generated in the system, we are able to get information
about the average coordination number of the grains involved
in the acoustic path. This information is contained in the ex-
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ponent of the speed-force relation, beingα ≃ 0.5 for 2 con-
tacts andα ≃ 0.16 for 4 contacts. The quotientcv/ch brings
information about the anisotropy of the system. With this in-
formation it is possible to reveal the structure of the granular
packing in a neighborhood of a line between the source of the
acoustic signal and the sensor. We have also shown that this
speed-force relation is a consequence of the force-deformation
relation of single grains. Being able to get information about
the internal structure of a compressed granular medium with
acoustic measurements is of great practical interest. Stabil-
ity analysis based on the contact topology of the grains [34],
avalanche prediction, and simplified models of earthquakes
are a few examples of it.

We thank K. Daniels, P. Jop, and V. Tournat for fruitful dis-
cussions. This work is supported by the AXA Research Fund.
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