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The influence of peeling angle on the dynamics observed during the stick-slip peeling of an adhesive tape has been
investigated. This study relies on a new experimental setup for peeling at constant driving velocity while keeping
constant the peeling angle and peeled tape length. The thresholds of the instability are shown to be associated with
a subcritical bifurcation and a bistability of the system. The velocity onset of the instability is moreover revealed
to strongly depend on the peeling angle. This could be the consequence of a peeling angle dependance of either the
fracture energy of the adhesive-substrate joint or the effective stiffness at play between the peeling front and the point
at which the peeling is enforced. The shape of the peeling front velocity fluctuations is finally shown to progressively
change from typical stick-slip relaxation oscillations to nearly sinusoidal oscillations as the peeling angle is increased.
We suggest that this transition might be controlled by inertial effects possibly associated to the propagation of the
peeling force fluctuations through elongation waves in the peeled tape.

1 Introduction

In standard fracture mechanics, crack growth is usually de-
scribed by a velocity-dependent fracture energy, account-
ing for the rate dependence of the energy cost of elemen-
tary dissipative rupture processes close to the fracture
tip1. Then, the condition for a crack to propagate at
a given velocity is that the amount of mechanical energy
released by a unit area of crack growth provides the corre-
sponding fracture energy2. When fracture energy becomes
a decreasing function of crack velocity, i.e. it costs less en-
ergy for the crack to grow faster, a dynamical instability
often occurs. In that case, the crack velocity starts to os-
cillate as well as the energy release rate. Such oscillations
are a common feature of crack propagation and can be
observed for very different ranges of mean crack velocity
depending on the considered material3,4. The stick-slip
oscillations observed during the peeling of adhesive films
is a very-well known example of such dynamic rupture in-
stability5–8.

The unstable “stick-slip” dynamics of adhesive film
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peeling is admitted to be the consequence of a decrease
of the fracture energy Γ(vp) of the substrate-adhesive
joint within a specific range of fracture velocity vp com-
bined with the compliance between the location where the
peeling velocity V is imposed and the peeling fracture
front5–12. This decrease has been proposed to proceed
from the viscoelasticity of the adhesive material coupled
to the effects of material confinement and large deforma-
tions13–17. Peeling an adhesive tape from a freely rotating
roller is a standard configuration which has received much
experimental and theoretical attention7,8,12,18–24. How-
ever, in some circumstances, the stick-slip peeling may
become intermittent when pendulum-like oscillations of
the roller develop as a result of the interplay between the
peeling force and the roller inertia23. This intermittent
behavior has been attributed to the possibility of an in-
trinsic dependance of the instability with the peeling angle
which, in these experiments, oscillates quasi-statically as
a consequence of the slow unsteady roller dynamics23.

In order to study properly the influence of the peeling
angle on the stick-slip instability, about which very few ex-
perimental results exist6, we have developed an innovative
experimental setup where the adhesive tape end is pulled
at a controlled velocity from a plane substrate which is
translated at the same velocity. Unlike usual peeling ge-
ometries allowing to control the peeling angle, we can also
keep fixed the length of the peeled tape, which controls
the elastic compliance of the peeling system and is an im-
portant control parameter of the instability. Furthermore,
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Figure 1: Scheme of the peeling experiment at controlled velocity V , angle θ and peeled tape length L. The translation
velocity V of the rigid bar and the winding velocity Rω are slaved electronically to each other. ℓbar is the position of
the rigid bar and ℓlab(t) = P0P (t) the position of the peeling front in the laboratory frame. M is the location of the
point where the winding of the peeled tape proceeds, P0 the average location of the peeling point and P (t) its location
as a function of time t. θ0 is the average peeling angle. We denote L = |MP0| the average peeled tape length.

in contrast with the roller geometry, the inertia of the
substrate (which becomes effectively infinite) will not be
anymore a parameter of the peeling problem. This new
setup, associated to a high speed imaging of the fracture
dynamics, has allowed us to quantify for the first time, at
fixed peeled tape length, the dependance of the instability
velocity thresholds and amplitude with peeling angle.

2 Experimental methods

The experimental setup (Fig. 1) consists in a 3 m long,
45 mm wide rigid bar which can be translated at a con-
trolled velocity V up to 4.5 m s−1 thanks to a CC servo-
motor. The bar is covered with a layer of adhesive tape
which constitutes the substrate of a second layer of the
same adhesive. The adhesive tape, 3M Scotchr 600 (as
in refs.12,22–24), is made of a polyolefin blend backing
(38 µm thick, 19 mm wide, Young modulus E = 1.26 GPa)
coated with a 20 µm layer of a synthetic acrylic adhesive.
The experiments have been performed at a temperature
of 22.3± 0.9oC and a relative humidity of 43± 9%.

During an experiment, the top layer adhesive tape is
peeled from its substrate thanks to a second servo-motor
which is winding the peeled tape on a cylinder of radius
R at a rotation rate ω (Fig. 1). The rotation rate ω is
slaved electronically to the velocity of the rigid bar trans-
lation, i.e. ω(t) ∝ V (t), such that Rω(t) ≃ V (t) even
during acceleration and deceleration transients of the ex-
periment. Whatever the target velocity V of the experi-
ment –between 0.03 and 4.5 m s−1– the two motors are
able to accelerate and decelerate enough strongly so that
a stationary regime at velocity V can be observed over at

least 1 m of peeling. When the imposed velocity V does
not fall in the stick-slip unstable range, the peeling front
velocity vp(t) is constant and kinematically set to V by
this system. In this situation, the coupled translation and
winding motions actually impose to the peeling point to
remain fixed in the laboratory frame, setting consequently
the peeling angle θ(t) and the peeled tape length |MP| to
constant values (see Fig. 1).

It is worth to point two experimental subtleties that
need to be managed carefully for the experimental setup
to work properly. First, if one sets the winding velocity Rω
and the translation velocity V to the exact same value, a
slow drift of the peeling point in the laboratory frame is ob-
served during the stationary phase of the experiment. This
drift is due to the fact the tape is peeled from the substrate
in an unstreched state whereas it is wound in a stretched
state. Second, during the peeling, the radius R(t) of the
winding cylinder –initially of 39.5 mm– increases of 0.6%
per meter of peeled tape due to the thickness of the tape
being wound, which drives an acceleration of the winding
with respect to the translation. In practice, we compen-
sate these two effects simultaneously by setting the target
winding rotation rate ω to a value slightly faster (of a few
0.1%) than the target translation velocity V . With this
method, we succeed to limit the slow drift of the peeling
point in the laboratory frame during the stationary stage
of peeling to values corresponding to drifts of the peeling
angle lower than 1◦ and drifts of the peeled tape length
lower than 3%.

The real value of our setup is that when the stick-slip in-
stability is present, the instantaneous fluctuations of the
peeling angle and of the peeled tape length still remain
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small: throughout all the experiments presented in this
paper, they are respectively ranging from 0.1◦ to 2◦ and
from 0.1% to 5%. At the same time, the peeling front ve-
locity oscillates strongly with amplitudes larger or much
larger than V . Note however that the peeling front veloc-
ity follows precisely the imposed velocity V once averaged
over timescales larger than the stick-slip instability period.
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Figure 2: Portions of the measured time series vp(t)/V
for typical experiments at θ = 90o: (a) L = 45 cm, V =
1 m s−1, regular stick-slip; (b) L = 69 cm, V = 3.25 m s−1,
bistable peeling. (c) Statistical average ∆vp/V of the am-
plitude of fracture velocity fluctuations δvp(t)/V as a func-
tion of V for θ = 90o and various peeled tape lengths L
(�: L = 25 cm ; N: L = 34 cm; ⋆: L = 45 cm; H:
L = 54 cm; I: L = 69 cm; ∗: L = 81 cm; �: L = 100 cm;
•: L = 134 cm). The standard deviation of δvp(t)/V over
all velocity fluctuations in one experiment is typically of
the order of the symbol size.

The peeling dynamics is imaged up to 20 000 frames/s
(Photron Fastcam APX RS). The corresponding images of
896×512 to 384×224 pixels have a resolution in the range
40 to 80 µm/pixel. From the recorded image time series,
we detect the location of the peeled tape in the laboratory
frame at a small distance of 0.7 ± 0.1 mm from the sub-
strate. This measurement provides an estimate for the po-
sition ℓlab(t) of the fracture front in the laboratory frame
(Fig. 1) and is used to compute the velocity dℓlab/dt with
typical errors of ±1%. We also measure the instantaneous
velocity of the substrate, dℓbar/dt, with a typical relative
precision of ±0.4%. We finally compute the fracture ve-
locity relative to the substrate vp(t) = dℓlab/dt+dℓbar/dt.

3 A subcritical instability

In Fig. 2(a), we show a sequence of the peeling fracture
velocity time series vp(t)/V for a typical experiment for
which stick-slip instability is observed, consisting in high
frequency alternation between slow and fast phases of peel-
ing. When the peeling is unstable, we typically observe
from a few dozen (for θ = 30◦) to a few hundred (for large
θ) stick-slip cycles during the complete stationary regime
of peeling in one experiment. Over this statistical ensem-
ble of stick-slip oscillations in a given experiment, we al-
ways observe a very stable period of stick-slip from cycle
to cycle, which illustrates that the stick-slip instability has
reached a “stationary state”.

In the following, we focus on the characterization of the
instability velocity amplitude as a function of the peel-
ing control parameters V , θ and L. To do so, we start by
defining, from the fracture velocity time series, the instan-
taneous amplitude of the peeling instability as the veloc-
ity contrast, δvp(t) = max(vp(t), t ∈ [t − T/2, t + T/2]) −
min(vp(t), t ∈ [t − T/2, t + T/2]), between the maximum
and minimum values of the fracture velocity vp(t) over a
sliding time interval T of the order of the typical stick-slip
cycles duration. Practically, we also compute this quan-
tity when stick-slip instability is not present, in which case
δvp measures the amplitude of the fracture velocity fluc-
tuations due to spatial heterogeneities in adhesion or to
the fluctuations of the velocity enforced by the motors.

In Fig. 2(c), we report the average of the amplitude
of fracture velocity fluctuations ∆vp/V = ⟨δvp(t)⟩/V as
a function of the driving velocity V for several experi-
ments performed with a peeling angle θ = 90o and var-
ious peeled tape lengths L. For imposed velocities V
below Vonset = 0.135 ± 0.005 m s−1 and above Vdisp =
3.7± 0.04 m s−1, the peeling dynamics is stable with lim-
ited velocity fluctuations |∆vp/V | < 0.2± 0.01. For peel-
ing velocities up to V = 0.45 ± 0.05 m s−1, a change in
the fracture dynamics occurs with the appearance of in-
termittencies between phases of a noisy but rather stable
peeling and phases of well-developed stick-slip instability
(Fig. 2(b)). In this bistable regime, the probability distri-
bution of δvp(t) has two bumps with a minimum around
1.5V . We analyze separately events with δvp < 1.5V cor-
responding to noisy stationary peeling and events with
δvp > 1.5V corresponding to stick-slip peeling. This data
processing leads to two average values ∆vp in Fig. 2(c)
which are characteristic of the coexisting two types of
peeling dynamics. For peeling velocities V larger than
0.45± 0.05 m s−1, bistability is no longer present and the
fully developed stick-slip regime of peeling is the unique
stable state of the system. A typical time series of vp(t)/V
in the pure stick-slip regime is provided in Fig. 2(a). For
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2.63 ± 0.13 < V < Vdisp = 3.7 ± 0.04 m s−1, the peeling
dynamics is bistable again, and can be characterized by
two average values of δvp/V for a given peeling velocity.
The bistability of the peeling dynamics at the appearance
and disappearance thresholds suggests that the stick-slip
instability onsets as a function of the imposed velocity V
are associated to subcritical bifurcations. This result con-
stitutes a very valuable information that excludes theoret-
ical models predicting supercritical bifurcations (at least
for the considered adhesive tape)8.

4 Impact of peeling angle

We study now how the features of the instability reported
in Fig. 2 for a peeling angle of θ = 90◦ depend on the two
control parameters that are the peeled tape length and
the peeling angle. In Fig. 2(c), we see that the different
instability thresholds and the value of the instability am-
plitude do not significantly depend on the length of the
peeled tape L, at least over the limited range of L investi-
gated here, from 25 to 134 cm. This invariance moreover
remains a robust feature when varying θ. On the contrary,
the instability thresholds depend strongly on the peeling
angle as can be seen in Figs. 3 and 4. Fig. 3 presents
a state diagram in the (V, θ)-space showing the domains
where the peeling is stable, bistable or fully unstable. We
find that the velocity range over which the adhesive peel-
ing is dynamically unstable tends to increase of at least an
order of magnitude as the peeling angle decreases. This is
observed for the two frontiers between stable and bistable,
as well as between bistable and stick-slip regimes. For
θ 6 60o, the limitations of the experimental setup in peel-
ing velocity V did not allow us to reach neither the low
velocity stable domain, nor the high velocity bistable and
stable domains. For θ increasing above 120o, the veloc-
ity thresholds seem to saturate to constant values. It is
important to highlight here that, to our knowledge, only
Aubrey et al.6 had previously reported evidence for a de-
pendence of the instability with the peeling angle thanks
to the observation of the disappearance of the instability
when θ is increased at a specific imposed velocity. They
however did not performed a systematic study of the in-
stability as a function of the control parameters and the
peeled tape length was varying during a tensile test. The
marked dependence of the stick-slip instability with the
peeling angle that we report here is consequently an im-
portant feature that has however not been considered by
current theories of adhesive peeling instability. This point
is discussed in more details in the final paragraphs of the
paper.

Figure 4 finally shows the dependance of the velocity
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Figure 3: Diagram of the peeling regime in (V, θ)-space.
Each marker corresponds to one experiment. The vertical
lines show the experimental limits of our setup. Continu-
ous gray lines are guides for the eyes.

amplitude ∆vp of the dynamical instability with peeling
angle θ and driving velocity V . Each data point corre-
sponds here to an average of δvp(t) over experiments for
which the peeling is fully unstable or on time intervals over
which stick-slip is observed for bistable experiments. Tak-
ing advantage of the fact that the instability amplitude
∆vp(V, θ, L) does not depend significantly on the peeled
tape length L, data for a fixed velocity V and peeling an-
gle θ are averaged over L. For a given peeling velocity V ,
the instability amplitude decreases with the peeling angle
θ, initially rapidly for small angles but more slowly as θ
increases. The instability amplitude finally seems to sat-
urate to a low limit value for θ > 120o. The dependance
of the instability amplitude ∆vp with the peeling velocity
V actually changes drastically with θ. For θ = 30o, the
instability amplitude is nearly constant with the peeling
velocity V whereas, as θ increases up to 150o, ∆vp(V )
tends towards linearity with V . The strong difference in
behavior between the stick-slip velocity amplitude at small
and large peeling angle is an intriguing result.

5 Discussion

5.1 Effect of peeling angle on the instabil-
ity thresholds

To get some insight on the reported effects of peeling angle
on the stick-slip instability, we start from the dynamical
equations derived originally by Barquins et al.7. In sta-
tionary peeling condition, the adhesive peeling dynamics
is described by the balance equation G = Γ(vp) between a
fracture energy Γ(vp), which accounts for the energy dissi-
pated near the fracture front, and the strain energy release
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Figure 4: Short portions of the measured time series of
the instantaneous peeling velocity for (a) V = 0.9 m s−1,
θ = 30o, L = 0.51 m and (b) V = 0.9 m s−1, θ = 150 o,
L = 0.54 m. (c) Instability amplitude ∆vp as a function
of peeling velocity V for different peeling angles θ. Each
marker represents data averaged over different peeled tape
length L. The lower dashline is ∆vp = 2V and the upper
one ∆vp = 40 m s−1.

rate G which corresponds to the release of mechanical en-
ergy, both per unit surface of fracture growth. The strain
energy release rate is25

G =
F

b
(1− cos θ) +

F 2

2b2eE
≃ F

b
(1− cos θ), (1)

where F is the force transmitted to the fracture along the
tape, b the tape width, e its thickness and E its Young
modulus. Neglecting the second term in Eq. (1), corre-
sponding to the elastic energy stored in the tape, is a very
good approximation for most adhesive tapes and peeling
geometries. In our case, this term goes from 2 to 3 orders
of magnitude smaller than the first term when θ increases
from 30◦ to 150◦.

In order to estimate the force F in the peeled tape, we
need to generalize for any peeling angle the relationship
between the tape elongation u and the peeling velocity vp
which was originally expressed as du/dt = V −vp in7, but,
as we show below, is valid for θ = 90◦ only. To that aim,
we introduce the following notations (see Fig. 1): M is
the location of the point where the winding of the peeled
tape proceeds, P (t) the location of the peeling point as
a function of time t and P0 its average location during a
stick-slip cycle (for stationary peeling, P (t) = P0). In the

reference frame of the laboratory, the peeling location P (t)
tends to move at a velocity V due to the translation motion
of the substrate and to move in the opposite direction due
to the peeling front propagation, such that

P0P (t) = ℓp(t)− V t. (2)

The distance between the winding and peeling points can
be written

|MP|(t) =
√
(MP0 +P0P(t))2,

≃ |MP0|+ P0P cos θ0, (3)

where θ0 corresponds to the peeling angle when the peel-
ing front is at location P0. The approximation made
in Eq. (3) is valid to a precision better than 0.4h in
our experiments since in practice we always observe that
|P0P | < 4 10−2|MP0|. The distance |MP|(t) can also be
related to the elongation u(t) through the equation

|MP|(t) = L (t) + u(t), (4)

where L (t) is the unstretched peeled tape length. L (t)
is not a constant and varies according to the rate of tape
creation at the peeling front and of tape disappearance at
the winding point

L (t) = L0 +

∫ t

0

(
vp(τ)−Rω

L (τ)

|MP|(τ)

)
dτ. (5)

Here, the tape on the substrate is assumed to have been
applied in an unstretched state while the tape wound on
the cylinder is stretched. As already discussed in section 2,
in our experiments, the stretch ratio |MP|/L departs
from 1 of typically 0.1% to 1.5% and the winding roller
radius R(t) slowly increases during the peeling. Practi-
cally, the velocity of the winding ω in the stationary stage

is set to a constant value such that ωR(t) L (t)
|MP|(t) matches

V to a precision always better than 1.5% at the worst mo-
ments (of the less favorable experiments): the match is
most of the time much better. We can therefore safely
approximate (5) by

L (t) ≃ L0 +

∫ t

0

(vp(τ)− V )dτ = L0 + ℓp(t)− V t. (6)

This approximation actually amounts to neglect the drift
during a stick-slip cycle of the peeling point position
ℓp(t) − V t in the laboratory frame due to the mismatch

between ωR(t) L (t)
|MP|(t) and V with respect to its stick-slip

oscillation amplitude: This approximation is truly rele-
vant since the former is never larger than 2% of the latter
in our experiments.
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From Eqs. (2-6), we obtain the following kinematical
constraint for the peeled tape elongation

u = u0 + (V t− ℓp)(1− cos θ0), (7)

where u0 = |MP0| − L0 is the mean elongation during
the peeling. In our geometry, the extension of Barquins et
al.’s equation7 for any peeling angle is thus

du

dt
= (V − vp)(1− cos θ0). (8)

If we assume a uniform tensile stress in the ribbon, we
can further write

F =
Ebe

L
u ≃ Ebe

L
u, (9)

(the approximation L ≃ L = |MP0| being valid to a pre-
cision better than 1% and generally much better). From
Eq. (1), we finally deduce the energy release rate

G ≃ Ee

L
(1− cos θ(t)) [u0 + (V t− ℓp)(1− cos θ0)] , (10)

where θ(t) corresponds to the peeling angle at location
P (t).

In our geometry (see Fig. 1), we have

cos θ(t) =
|MP0| cos θ0 + P0P√

|MP0|2 + |P0P|2 + 2MP0 ·P0P
. (11)

Since |P0P | < 4 10−2 |MP0|, we can develop (11) to the
first order in P0P/|MP0| = (ℓp − V t)/L which leads to

cos θ(t) ≃ cos θ0 +
ℓp − V t

L
(1− cos2 θ0). (12)

Finally injecting (12) into (10) and noting that u0/L =
Γ(V )/Ee(1 − cos θ0) is typically of order of 10−3 for the
studied adhesive tape∗ and therefore smaller than |ℓp −
V t|/L, the energy release rate can be written to first order
in (ℓp − V t)/L

G =
Ee

L
(1− cos θ0) [u0 + (V t− ℓp)(1− cos θ0)] . (13)

Its time derivative finally verifies

dG

dt
=

keff
b

(V − vp). (14)

where keff = (1 − cos θ0)
2 Ebe/L is an effective stiffness.

We stress here that one of the factors (1 − cos θ0) comes
from the geometry dependence of the energy release rate,

∗The fracture energy for Scotchr 600 adhesive tapes is typically
of the order of or less than 100 J m−2 12.

while the other one arises from the unstable peeling dy-
namics.

Finally, assuming that the quasistatic relation G = Γ
still holds instantaneously when peeling is not stationary,
we obtain the following dynamical equation

dΓ

dvp

∣∣∣∣
vp

dvp
dt

=
keff
b

(V − vp). (15)

The stationary solution vp(t) = V of Eq. (15) becomes un-
stable as soon as the fracture energy Γ(vp) is a decreasing
function. According to this simple approach, the insta-
bility onset should be the velocity Va at the end of the
“slow” increasing branch of Γ(vp) where it reaches a lo-
cal maximum (see Fig. 2 in24 representing Γ(V ) for the
Scotchr 600 adhesive tapes). Therefore, one may ask if
the effect of peeling angle on the stick-slip instability on-
set and amplitude could be related to a peeling angle de-
pendance of the velocity Va(θ) and more generally of the
fracture energy Γ(vp, θ). This dependance should however
be strong enough to explain the reported change of an
order of magnitude in the instability velocity range over
the studied range of peeling angle. To our knowledge,
there is no indication from the literature for such a strong
angle dependence of the fracture energy. It has actually
received only few experimental tests, which tend to rule
out such peeling angle dependence25–27. The only evi-
dences for an angular dependance of Γ have been reported
by Kaelble28, who relates it to a transition from cleavage
to shearing loading of the adhesive at very small peeling
velocities, and by Gent & Hamed29, who relates it to the
appearance of plastic deformations of the tape backing at
large peeling angle. All these works however involve adhe-
sives which are significantly different from ours. It would
therefore be valuable to measure systematically the frac-
ture energy dependence with peeling velocity and angle
for the adhesive tape considered here.

On the contrary, previous experimental observations of
the stick-slip instability of peeling30 have shown that in-
creasing the stiffness of the loading system when peeling
at 90◦ leads to a reduction of the stick-slip unstable do-
main and may even suppress it entirely. A similar effect
is known in the case of frictional stick-slip instability31.
From that perspective, the reduction in the stick-slip ve-
locity range with increasing peeling angle could be due
to an increase in effective stiffness keff . Indeed, a strong
increase of keff by a factor of 200 is obtained when in-
creasing the peeling angle from θ = 30o to 150o. Likewise,
the lack of detectable effect of the peeled length on the
unstable velocity range could simply be due to the corre-
sponding weak variation in effective stiffness, limited to a
factor of 5 in our experiment. From a theoretical point of
view, the physical origin of the reduction of the unstable
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velocity range when the elastic stiffness of the loading be-
comes large is still unclear in the case of the adhesive tape
peeling.

5.2 Effect of the peeling angle on the in-
stability limit cycles: an inertial ef-
fect?

In addition to the instability thresholds, it is also funda-
mental to carefully consider how the instability velocity
fluctuations, once developed, are strongly dependent on
the peeling angle.

For small angle, the stick-slip amplitude ∆vp is nearly
constant around the value 40 m s−1. These experiments
actually correspond to the archetypal stick-slip relaxation
dynamics, with the peeling being alternatively very slow
during long stick phases and very fast during very short
slip phases as illustrated in Fig. 4(a). Barquins and
Maugis7,8 proposed that in this regime the stick-slip dy-
namics is such that the peeling explores quasistatically
the “slow” stable velocity branch of Γ(vp) during the stick
phase, i.e. G(t) = Γ(vp(t)), in alternance with infinitely
short dynamical slip phases approaching the fast stable
branch of Γ(vp) (see Fig. 2 in24 representing Γ(V )). This
theoretical framework leads to quantitative prediction of
the stick period which have received several experimental
validations7,8,24. It predicts in particular that the stick-
slip oscillation period decreases almost as 1/V which we
have checked to be valid for the data presented here for
θ = 30◦. In the framework of this relaxation stick-slip dy-
namics, one would also expect very large values of ∆vp,
independent of the average peeling velocity, exactly as ob-
served in our experiments at θ = 30◦.

For large angles, in contrast, ∆vp becomes dependant
on the peeling velocity, converging towards ∆vp = 2V
(Fig. 4(c)), and the time evolution of vp during a stick-
slip cycle consists in nearly sinusoidal oscillations around
V (Fig. 4(b)). This behavior occurs at large effective stiff-
ness keff ∝ (1 − cos θ)2 which, according to Eq. (15), im-
poses a smaller and smaller quasistatic time scale for the
velocity dynamics as θ increases. Whereas the quasistatic
time scale gets smaller, some inertial effects may eventu-
ally become important: they could be associated to the
propagation of elongation waves in the backing tape or
to the changes in the tape bending close to the peeling
fracture front. Before building a complete description of
the interaction between the crack growth criterion at the
peeling fracture front and the dynamics of the elastic de-
formations of the backing tape, one may try to take into
account empirically the effective influence of these inertial
effects on the quasistatic balance equation G = Γ(vp) by

replacing it with a dynamical equation

µẍ = G− Γ(ẋ), (16)

where x is the position of the peeling front, so that vp = ẋ,
and µ represents a yet unknown effective inertial mass per
unit length. Eq. (16) was originally proposed by Webb
and Aifantis32 in order to describe oscillatory crack prop-
agation in polymeric materials.

A stationary solution of Eq. (16) is xs = V t and ẋS = V .
Introducing the fluctuations around the stationary solu-
tion δx = x− xs (hence, δẋ = ẋ− V ), Eq. (16) becomes

µδẍ+
keff
b

δx = Γ(V )− Γ(ẋ). (17)

The left hand side of this equation corresponds to an har-
monic oscillator with angular frequency ω =

√
keff/bµ.

As can be seen in Fig. 4(b), the experimental motion of
the peeling front when the peeling angle is large is not
very far from a sinusoidal oscillation. The correspond-
ing experimental period of oscillations Tss can be used to
get an estimate of the effective mass per unit length µ.
For θ = 150◦ and V = 0.9 m s−1, we have for example
Tss = 2.2 ± 0.4 ms and keff = 5.9 103 N m−1, so that we
would predict µ ≃ 0.038 ± 0.013 kg m−1. This value is
close to the mass of the peeled tape per unit width of the
peeling front: α = 0.024 kg m−1.

Furthermore, for the same experiment, we have mea-
sured stick-slip amplitudes of about 2 mm. Taking there-
fore δx = 1 mm, we find that keff

b δx ≃ ±309 J m−2,
hence an amplitude of about 600 J m−2. In the ideal
stick-slip cycle described by Barquins et al., the variation
of fracture energy corresponds to the two extreme values
of the decreasing branch of Γ(V ). It was measured to be
at most 100 J m−2 when peeling at 90◦ from a roller for
the Scotchr 600 adhesive tapes24. Provided the order of
magnitude of Γ does not depend strongly on θ, we can
thus expect that fluctuations of elastic energy release rate
are about 6 times larger than the fluctuations of fracture
energy during a stick-slip cycle. This observation confirms
that a strong discrepancy between G and Γ(ẋ) may appear
and shall be accounted for by a new physical term in the
equations. If we do assume that Γ(ẋ) − Γ(V ) can conse-
quently be neglected at large peeling angle and that ẋ = 0
when u = 0, which is the case when the peeled tape has
not been loaded yet, we obtain the following asymptotic
solution of Eq. (17)

x = V t− V

ω
sin(ωt),

ẋ = V (1− cos(ωt)). (18)

This asymptotic solution is consistent with the experimen-
tal velocity oscillation observed at large angle (Fig. 4(b)).
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It moreover predicts exactly ∆vp = 2V for the instability
amplitude which is the experimentally observed asymp-
totic limit.

This analysis shows that, at large peeling angle, when
the effective stiffness of the peeled tape is large, the frac-
ture energy seems to be eventually not important in the
determination of the fracture velocity limit cycles, al-
though it surely remains important to make the peeling
unstable, i.e. to trigger the instability. For smaller peeling
angles, we expect the unstable peeling dynamics to be due
to a combination of inertial effects, geometry-dependent
stiffness and fracture energy decreasing with fracture ve-
locity. The fact that geometry has a determinant role
on the dynamical instability of adhesive peeling, which is
stronger than expected from the simple geometry depen-
dence of the energy release rate, is intrinsically connected
to the action of an effective inertial mass of the crack whose
physical origin is still to be uncovered.
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