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Existence, Uniqueness, and Convergence of optimal control
problems associated with Parabolic variational inequalities of
the second kind

Mahdi Boukrouche* Domingo A. Tarzial

Abstract

Let ugy the unique solution of a parabolic variational inequality of second kind, with a
given g. Using a regularization method, we prove, for all g; and g2, a monotony property
between pug, 4 (1 — p)ug, and u,g, 4 (1—p)g, for p € [0,1]. This allowed us to prove the
existence and uniqueness results to a family of optimal control problems over g for each
heat transfer coefficient h > 0, associated to the Newton law, and of another optimal
control problem associated to a Dirichlet boundary condition. We prove also , when
h — +o00, the strong convergence of the optimal controls and states associated to this
family of optimal control problems with the Newton law to that of the optimal control
problem associated to a Dirichlet boundary condition.

Keywords: Parabolic variational inequalities of the second kind, convex combination
of solutions, monotony property, regularization method, dependency of the solutions on
the data, strict convexity of cost functional, optimal control problems.
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Short title : Controls for parabolic variational inequalities

1 Introduction

Let consider the following problem governed by the parabolic variational inequality
(U(t), v—u(t)) +alu(t), v—u(t)) + P(v) — ®(u(t)) >< g(t), v—u(t) > YvekK, (1.1)
a.e. t €]0, T, with the initial condition
u(0) = uy, (1.2)

where, a is a symmetric continuous and coercive bilinear form on the Hilbert space V x V,
® is a proper and convex function from V into R and is lower semi-continuous for the weak
topology on V, < -,- > denotes the duality brackets between V' and V', K is a closed convex
non-empty subset of V', uy is an initial value in another Hilbert space H with V being densely
and continuously imbedded in H, and g is a given function in the space L?(0,T,V"). It is
well known [17, 18, 21, 22] that, there exists a unique solution

weC(0,T,H)NL*0,T,V) with o= % € L*(0,T, H)
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to (1.1)-(1.2). So we can consider g — u, as a function from L?*(0,T, H) to C(0,T,H) N
L?(0,T,V). Then we can consider [26, 27, 34] the cost functional J defined by

1 2 M 2
J(9) = Sluglreom,my + 5 19T 0,1,y (1.3)

where M is a positive constant, and u, is the unique solution to (1.1)-(1.2), corresponding
to the control g. One of our main purposes is to prove the existence and uniqueness of the
optimal control problem

Find g,, € L*(0,T, H) such that J(gop) = geng(l(%,nT,H) J(g). (1.4)
This can be reached if we prove the strictly convexity of the cost functional J, which follows

(see Theorem 3.1) from the following monotony property : for any two control g1 and gy in
L*(0,T, H),

ug(p) <ug(p) Ve l0,1], (1.5)

where

uz(p) = pur + (1 — plug,  uap) = ugyy, with  g3(p) = pgr + (1 — p)ga.  (1.6)

In Section 2, we establish first in Theorem 2.2, the error estimate between ug(u) and wg(p).
This result generalizes our previous result obtained in [16] for the elliptic variational inequali-
ties. We deduce in Corollary 2.3 a condition on the data to get us(u) = ua(p) for all p € [0, 1].
Then we assume, that the convex K is a subset of V = H'(Q) and consider the parabolic
variational problems (P) and (P},). So, using a regularization method, we prove in Theorem
2.5 this monotony property (1.5), for the solutions of the two problems (P) and (Fy). This
result with a new proof and simplified, generalizes that obtained by [29] for elliptic variational
inequalities. In Subsection 2.1 we also obtain some properties of dependency solutions based
on the data g and on a positive parameter h for the parabolic variational inequalities (1.1)
and (2.1), see Propositions 2.6, 2.7 and 2.8.
In Section 3, we consider the family of distributed optimal control problems (P )n~0,

Find gop, € L*(0,T,H) such that  J(gop,) = gELgr(l(i],nTﬂ) Jn(9), (1.7)

with the cost functional

1 M
Jn(g) = §||ugh”%2(o,T,H) + 7||9H%2(0,T,H)’ (1.8)

where w4, is the unique solution of (2.1)-(1.2), corresponding to the control g for each h > 0,
and the distributed optimal control problems

Find g, € L*(0,T,H) such that J(gop) = QELgr(lévnT’H) J(9), (1.9)

with the cost functional (1.3) where u, is the unique solution to (1.1)-(1.2), corresponding to
the control g. Using Theorem 2.5 with its crucial property of monotony (1.5), we prove the
strict convexity of the cost functional (1.3) and also of the cost functional (1.8), associated
to the problems (1.9) and (1.7) respectively. Then, the existence and uniqueness of solutions
to the optimal controls problems (1.9) and (1.7) follows from [27].

In general see for example [20] the relevant physical condition, to impose on the bound-
ary, is Newton’s law, or Robin’s law, and not Dirichlet’s. Therefore, the objective of this



work is to approximate the optimal control problem (1.9), where the state is the solution to
parabolic variational problem (1.1)-(1.2) associated with the Dirichlet condition (2.2), by a
family indexed by a factor h of optimal control problems (2.1)-(1.2), where states are the
solutions to parabolic variational problems, associated with the boundary condition of New-
ton (2.3). Moreover, from a numerical analysis point of view it maybe preferable to consider
approximating Neumann problems in all space V' (see (2.1)-(1.2)), with parameter h, rather
than the Dirichlet problem in a subset of the space V (see (1.1)-(1.2)). So the asymptotic
behavior can be considered very important in the optimal control.

In the last subsection 3.1, which is also the goal of our paper, we prove that the optimal
control gop, (unique solution of the optimization problem (1.7)) and its corresponding state
U, , (the unique solution of the parabolic variational problem (2.1)-(1.2)) for each h > 1,
are strongly convergent to g,, (the unique solution of the optimization problem (1.9)), and
Ug,, (the unique solution of the parabolic variational problem (1.1)-(1.2)) in L2([0,7] x Q)
and L2(0, T, H*(9)) respectively when h — +oo0.

This paper generalizes the results obtained in [23], for elliptic variational equalities, and
in [28] for parabolic variational equalities, to the case of parabolic variational inequalities
of second kind. Various problems with distributed optimal control, associated with elliptic
variational inequalities are given see for example [1, 4], [7]-[9], [19, 25], [29]-[31], [39] and for
the parabolic case see for example [2, 4, 5], [10]-[12], [32, 33], [35].

2  On the property of monotony

As we can not prove the property of monotony (1.5) for any convex set K. Let € a bounded
open set in RY with smooth boundary 0Q = I'y UT,. We assume that I'y N Ty = @, and
meas(T'y) > 0. Let H = L?(2), V = H*(Q)). We can prove the property of monotony (1.5)
for any convex subset of V. Let

K={veV: vp =0}, and Ky={veV: wvp =b}.

So we consider the following variational problems with such convex subset.

Problem (P) Let given b € L?(]0,T[xTI1), g € L*(0,T,H) and ¢ € L*(]0,T[xT3), ¢ > 0.
Find u in C([0, 7], H) N L?(0, T, K}) solution of the parabolic problem (1.1), where < -,- > is
only the scalar product (-,-) in H, with the initial condition (1.2), and ®(v) = [}, g|v|ds.
Problem (P,) Let given b € L*(]0,T[xI'1), g € L*(0,T, H) and q € L*(J0,T[xT), ¢ > 0.
For all coefficient h > 0, find u € C(0, T, H)N L?(0,T, V') solution of the parabolic variational
inequality

(a(t), v —u(t)) + an(u(t), v —u(t)) + ®(v) — S(u(t)) = (9(t),v — u(t))
+h/ b(t)(v —u(t))ds Vv eV, (2.1)
Iy

and the initial condition (1.2), where ap(u,v) = a(u,v) + hfrl uvds.
It is easy to see that the problem (P) is with the Dirichlet condition

u=b on T1x]0,T], (2.2)

and the problem (Py) is with the following Newton-Robin’s type condition

ou

5 = h(u—10b) on T1x]0,T]. (2.3)



where n is the exterior unit vector normal to the boundary. The integal on I's in the expression
of ® comes from the Tresca boundary condition (see [13]-[15],[22]) with ¢ is the Tresca friction
coefficient on I'y. Note that only for the proof of Theorem 2.5 we have need to specify an
expression of the functional ®.

By assumption there exists A > 0 such that Ajv[|} < a(v,v) Vv € V. Moreover, it
follows from [36, 37| that there exists A; > 0 such that

an(v,v) > Mpllvl|F Yo €V,  with A\, = A\; min{1, h}

S0 ap, is a bilinear, continuous, symmetric and coercive form on V. So there exists an unique
solution to each of the two problems (P) and (Py).

We recall that ug is the unique solution of the parabolic variational problem (P), cor-
responding to the control g € L?(0,T, H), and also that Ug, is the unique solution of the
parabolic variational problem (Py), corresponding to the control g € L?(0,T, H).

Proposition 2.1. Assume that g > 0 in Qx]0,T[, b > 0 on I'1x]0,T[, up > 0 in Q. Then
as ¢ > 0, we have ug > 0. Assuming again that h > 0, then ug, >0 in Q2x]0,T7.

Proof. For u = uy, , it is enough to take v = u™ in (2.1), to get

T
lu= (T >HL2(Q A / = (&) |2 dt + b / /F Vdsdts < — /0 (g(t), u™ (1))t

- q([u(t)| = [u*(t))dsdt — h (O)dsdt + [u=(0)[|72(q)  (24)
0 Jry F1

so the result follows. O

Theorem 2.2. Let u; and ug be two solutions of the parabolic variational inequality (1.1)
with the same initial condition, and corresponding to the two control g1 and go Tespectively.
We have the following estimate

2 ) — s 00) 37y + Mlsa ) — () 0,0y + 1) (T) + (1= 1) Toa(10)(T)
() + (1 — p)®(uz) — Dus() < pu(l — ) (AT, g1) + B(T.g2)) Vi € [0, 1],

where

T T T
Tia(u)(T) = /0 La(p)(t)dt forj =12, A(T,g1) = /0 a(t)dt, B(T,gy) = /0 B(t)dt

Lia(p) = (i, ua(p) — ug) + aluy, ua(p) — uj) + P(ua(p)) — 2(uy) — (g5, ua(p) —uz) >0,
a= (U1, ug —ui) +auy, ug —uy) + P(uz) — ®(u1) — (g1, u2 — u1) >0, (2.5)
ﬁ = <ZZ2, U — UQ> + CL(UQ , U — UQ) + <I>(u1) — ‘I)(UQ) — <92,U1 — UQ> >0

Proof. As ug(p)(t) € K so with v = wus(u)(t), in the variational inequality (1.1) where
u=uy(p) and g = g3(u), we obtain

(tg(p), us(p) —ug(p)) + alug(p), us(p) — ug(p)) + P(us(p)) — @(ua(p))
> (g3(u),us(p) —ug(p)) a.e.t €]0,T],



then

(g (p) — uz(p) s wa(p) —us(p)) + alus(p) —us(p) , ua(p) — us(p))
< (Us(p) , us(p) —ua(p)) + alus(p) , uz(p) — ua(p))
+®(uz(p)) — P(ua(p)(t)) — (g3(p), us(p) —ua(p)) a.e.t €)0,17,

thus

(llua () = us () [37) + Mlua(pe) = us()ll} < (as(n), us(p) —ualp)

)
+a(us(p), us(p) — ua(p)) + @(uz(p)) — ©(ua(p))
—(g3(1), uz(p) —ua(p)), a.e.t€)0,T],

DO | —
gl

using that uz(u) = pu(ur — ug) + u2, g3(p) = plg1 — g2) + g2 we get

%% (lua () = us()l[7r) + Mlua(pe) = us(W)ly + pP(ur) + (1 — )@ (uz) — (uz(p)

< (L = p)(a+ B) = pha(p) — (1 = p)l2a(p) ae.t €0,T],
so by integration between t = 0 and ¢t =T, we deduce the required result. U

Corollary 2.3. From Theorem 2.2 we get a.e.t € [0, T

ug(p) = ua(p)  Vp €[0,1],
AT, 1) = B(T, ) =0 =< () = Ioa(u) =0 Ve [0,1],
D(us(p)) = p@(ur) + (1 — p)®(uz)  Vpe[0,1].

Lemma 2.4. Let uy and ug be two solutions of the parabolic variational inequality of second
kind (1.1) with respectively as second member g1 and g2, then we get

1
[ur = w2l Foo 0,7,y + Alur = w2l|720.7vy < T 91 = 9207200717y (2.7)

Where X\ is the coerciveness constant of the biliear form a.

Proof. Taking v = ug in (1.1) where u = uy and g = g¢1; then v = u; in (1.1) where u = uq
and g = g, so by addition (2.7) holds. O

We generalize now in our case the result on a monotony property, obtained by [29] for the
elliptic variational inequality. This theorem is the cornestone to prove the strict convexity of
the cost functional J defined in Problem (1.9) and the cost functional .J;, defined in Problem
(1.7). Remark first that with the duality bracks < -,- > defined by

<glt)p>= (g(t).0) +h / b(t) pds

(2.1) leads to (1.1). We prove the following theorem for ® such that ®(v) = [}, qlv|ds.
Theorem 2.5. For any two control g, and go in L*(0,T, H), it holds that
ug(p) <wug(p) in Qx1[0,7], Vwuelo,1]. (2.8)

Here ug(p) = Upug, +(1—pygo» U3(1t) = prung, + (1 — p)ug,, u1 = ug, and ug = ugy, are the unique
solutions of the variational problem P, with g = g1 and g = go respectively, and for the same
q, and the same initial condition (1.2). Moreover, it holds also that

upa(p) <wupg(p) in Qx1[0,T], Vuelo,1]. (2.9)



Here ugp(p) = Upgrp+(1—p)gan s ush(p) = pugy, + (1 = pug,, , uih = ug,, and upy = ug,, are
the unique solutions of the variational problem Py, with g = g1 and g = go respectively, and

for the same q, h, b and the same initial condition (1.2).

Proof. The main difficulty, to prove this result comes from the fact that the functional ® is
not differentiable. To overcome this difficulty, we use the regularization method and consider
for € > 0 the following approach of ®

D (v) = /F q\/ €2 + |v|2ds, Yo eV,
2

which is Gateaux differentiable, with

quv 2
W= [ — I s Y(w,v) e V2
) /Fg e2 + |w|? (w,v)

Let u® be the unique solution of the variational inequality

(0, v—ut) +a(u®, v—u®)+ (PL(u®), v —u®) > (g, v—u°) aetel0,T]
Vv € K, and u®(0) = up. (2.10)

Let us show first that for all p € [0,1] uj(p) < u§(p), then that u§(p) — ug(p) and uj(p) —
ug(p) strongly in L2(0,T; H) when ¢ — 0. Indeed for all u € [0,1], let con81der Us(n) =
uf(p) — u§(p) thus ug(p)(t) — UF (p)(t) is in K. So we can take v = ui(p)(t) — UF (1) (t) in

(2.10) where u® = u§(u) and g = g3(p) = (g1 —9g2)+g2. We also can take v = uj (¢ )—i—Uj( )(t)
in (2.10) where u® = uj and g = g1, and we multiply the two sides of the obtained inequality
by p then we take v = u§ + U (p) in (2.10) where u® = u§ and g = g, and we multiply the
two sides of the obtained inequality by (1 — u). By adding the three obtained inequalities we
get a.e.t €]0,T7,

& o U o)) + MU ()R < (el )+ (1 — )L 0) — L0 () , U2 (),

hence as U (u)(0) = 0, by integration from ¢t = 0 to ¢t = T we obtain a.e. t €]0, T
T
SIS+ [ 102l <
0
T
< /0 (n®L(ui(t)) + (1 — ) @L(u5(t)) — L(ui(u)(t)), UL (n)(2))d.

< p®@L(uf) + (1 — p)@L(u3) — L(ui(n) , U (1) >=

/ apuiUs (W) oo [ a0 = pusUs (w) qui(WUS (1)

S_
C T e e e

where I'y = T'oN{u§ (1) > u5(p)}. The function z — ¢(z) = = for 2 € R is increasing

2

/ 2.2 2\ 32 s
(V' (x) =e*(e® +a%)2 >0)SO
/ _qpuiUZ () / (1—M)u3U§’(M)ds_ qui()UZ (1) ) 4
5 /€2+ HU1||2 Ver+ [ugf? ry /e Jugl?
/ iU ) oo [ Q= wusUs ) o asUSw)
2+ !uﬂz vy Ve [usl vy VA TGE

6



Moreover the function 1 is concave on R* \ {0} (v (z) = —3e%x(e? + xQ)%S < 0) thus

1 T
ST+ + X / |0 () ()2t < o (2.11)
0
As U () = 0 on {Ty x [0, 7]} 1 {u5 (1) < u5(n)} so

uz(p) < uz(p) Ve [0,1]. (2.12)

Now we must prove that u§(u) — us(p) and u§(u) — ug(p) strongly in L2(0,T; H) when
e — 0. Taking in (2.10) v = u, € K with u® = u§ (i = 1,2), we deduce that

(U, uj —up) + aluj —wp, ug —up) + (PL(u7), uf) < alup, up — uf)

HOL(u7) , wp) — (g3, wp — ).

(®L(uf), uj) 20 and |<‘1>2(Uf),Ub>|§/F qlup|ds
2

we deduce, using the Cauchy-Schwartz inequality, that [[uf||z2 0,7, so also [[u(p)|l 20,1
are bounded independently from . By Theorem 2.2 we get

1
S () = W) oo 0.2y + Al () — (Wl 202wy < (1 = 1) (A°(T, 1) + B (T, 32))
1
< w1t = )5 (llgr = 2llBeorm + 1§ — 320 zny) i€ 0,1]

thus [lug (1)l r2(0,r;vy i also bounded independently from e. So there exists [; € V, for
i=1,---,4, such that

ué — I; in L*(0,T; V) weak, and in L°°(0,T; H) weak star. (2.13)
We check now that [; = u;. Indeed for i = 1,2 or 4 and as ® is convex functional we have,

(07, v—uf) +a(uf, v—uj) + c(v) = Pc(u) >

7

(a5, v—ui) +a(us, v—ui)+ <<I>é(uf), v—ui) > (g, v—u), ae.tec|0,T]|

3 (2

thus

(G, v—ui)+aui, v—ui)+ P (v) — D(u) > (g;i, v—u3), a.e.t€|0,T] (2.14)

7

Taking v = u &+ ¢, in (2.14) we have
(i, ) = —a(uf, 9) + (9i, ¥), Vo € L*(0,T, Hy(Q)). (2.15)

As H}(Q) C V with continuous inclusion but not dense, so V' (the topological dual of the
space V) is not identifiable with a subset of H~1(2). However, following [28] we can use
the Hahn-Banach Theorem in order to extend any element in H () to an element of V'
preserving its norm. So from (2.13) and (2.15) we conclude that

uf — I; in L*(0,T,V) weak, in L>=(0,T, H) weak star, }

and 4 — I; in L*(0,T, V") weak. (2.16)



Then from (2.14), and following ([22, 38]) we can write
T T
|t o)+ aluf )+ ) — g v )b [ (G u) ) + @)
0 0
1 € 2 1 2 g € € €
= Sl (D = 5l (D)1 + ; {a(ui, uf) + ®c(uf)} dt.
Using the property of ®. we have liminf._,o ®.(uj) > ®(l;), and (2.16) we obtain
T . T .
/ Lz, ) +alls. v) + () — {gi v — 1)} e > / (1) + alls, 1) + 209 }ar. (217)
0 0

Let w € K and any to €]0,7[ then we consider the open interval O; =]ty — %, to + %[C]O, T|

. " . . N wifte Oj,
for j € N* sufficiently large we take in (2.17) v = { () it ¢ €10, TN\O, to get
/ (G, w =) +alli, w = 1) + (w) — o)} dt > / (i, w—1l)dt.  (2.18)
O; O
We use now the Lebesgues Theorem to obtain, when j — +o00
<l2 , W — ll> + a(lz , W — lz) + ‘I)(ZU) — (I)(lz) > <gi , W — l2>, a.e.t 6]0, T[ (219)

So by the uniqueness of the solution of the parabolic variational inequality of second kind
(1.1), we deduce that l; = u;.

To finish the proof we check the strong convergence of u; to u;. Indeed for i = 1,2 or 4
taking v = u;(t) in (1.1) where v = u$ then v = u$(¢) in (1.1) where u = w;, then by addition,
and integration over the time interval [0,7] we obtain

T
) =T+ [ () =0 ) i)

T
< /0 D (ui(t)) — P(ui(t)) + P(u; (t) — Pe(us (t))dt (2.20)

as

Bo(0) — B(v) = / d(VE TR - lo)ds < e/l lall 2cra.

Iy

so from (2.20)

1 T
Sl =i e 0,0,y + /0 a(ui(t) — ui(t),ui(t) —uj(t))dt < 2Te\/|Talllqlr2(r,)

ui — w; strongly in L?(0,T; V) NL>(0,T; H) for i = 1,2,4 (2.21)
then also

ug(p) = pu§ + (1 — p)us — g strongly in L2(0,T; V) N L>(0,T; H). (2.22)

from (2.12), (2.21) and (2.22) we get (2.8). As the proof is given for any two control g = g1
and g = go in L?(0,T, H), but for the same ¢, h, b and the same initial condition (1.2), so we
get also (2.9). O



2.1 Dependency of the solutions on the data

Note that this Subsection is not needed in the last Section. We just would like to establish
three propositions which allow us to deduce some additional and interesting properties on
the solutions of the variational problems P and Pj,.

Proposition 2.6. Let ug,, ug be two solutions of Problem P, with g = g, and g = g
respectively. Assume that g, — g in L*(0,T,H) (weak), we get

ug, —ug, in  L*(0,T,V)NL®(0,T,H) (strong) (2.23)
Uy, — g in  L*(0,T,V') (strong). (2.24)
Moreover
g1 >g2 in Qx[0,T] then wug >ug in Qx[0,T]. (2.25)
Urnin(gr,g2) < ug(p) < Umnaz(g1,92) 1 Vu € [0,1]. (2.26)

Let ug,p, ug,n be two solutions of Problem Py, with g = g1 and g = g2 respectively for all
h >0, we get

g1 > g2 in Qx[0,T] then wgp > ugn in Qx[0,T]. (2.27)
umin(gl,gg)h < uh4(:u') < umaa}(gl,gz)h vlu' € [O, 1] (228)
Proof. Let g, — g in L*(0,T, H), ug, and u, be in L*(0,T, K) such that

(g, v — ug,) + alug,, v —ug,) + ®(v) = P(ug,) > (gn, v — ug,)
Vv e K, ae.te€|0,T] (2.29)
Remark also that Vo = {v € V : U, = 0} C V with continuous inclusion but not dense,
so V' is not identifiable with a subset of V. However, following again [28] we can use the
Hahn-Banach Theorem in order to extend any element in V4 to an element of V' preserving

its norm. So with the same arguments as in (2.14)- (2.19), we conclude that there exists n
such that (eventually for a subsequence)

Uy, — 1 in L2(O,T, V) weak, in LOO(()’T’ H) weak star, } (2 30)

and 4g, — 7 in L2(0,T, V') weak
Using (2.30) and taking n — 400 in (2.29), we get
(o — ) +alno— )+ B(0) — D) > (gv—m),  Yoe K, aeteoT] (231

by the uniqueness of the solution of (1.1) we obtain that = uy. Taking now v = u4(t) in
(2.29) and v = ug, (t) in (2.31), we get by addition and integration over [0,7] we obtain

1 T
§Hugn(T) — ug(T)|[3r + Alug, — ugH%2(0,T7V) < /0 (gn(t) = g(t) ; ug, (t) — ug(t))dt,

so from the above inequality and (2.30) we deduce (2.23). To prove (2.25) we take first

v =wuy(t) + (ui(t) —uz(t))” (which is in K) in (1.1) where v = uy and g = g1, then taking
v =wug(t) — (u1(t) — ua(t))” (which also is in K) in (1.1) where u = ug and g = g2, we get

T
%H(ul(T) —uz(T)) ™ F + All(ur — u2) " [|720.7.v) < /0 (92(t) — g1 (1), (ur(t) —ua(t))”)dt
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as

<I>(u1) — <1>(u1 + (u1 - UQ)_) + ‘I)(UQ) - (I)(UQ - (U1 - UQ)_) =0.
So if go — g1 < 01in Q x [0,7] then [[(u1 — u2)~ |l2(0,r,v) = 0, and as (w1 — u2)” = 0 on
'y x]0,T[ we have by the Poincaré inequality that u; —ug > 0 in Q x [0,7]. Then (2.26)
follows from (2.25) because

min{gi, g2} < pg1 + (1 — p)go < max{gy, g2} Vp €[0,T].

Similarly taking v = ug,p(t) + (ug,n(t) — ugyn(t))” (which is in V') in (2.1) where u = ug,p
and g = g1h, then taking v = ug,,(t) — (ug, n(t) — ug,n(t))” (which also is in V) in (2.1) where
u = ug,p, and g = goh, we get

1 _ _ —
(g n(T) = ugn (1)~ 77 + All(tigin = tgn) ™ 7202,y + Pl (tgin = tgan) 720,122y
T
< [ @0 = 010). (a(®) = uafe)
so we get also (2.27), then (2.28) follows. O

The following propositions 2.7 and 2.8 are to give, with some assumptions, a first infor-
mation that the sequence (ug, )p>0 is increasing and bounded, therefore it is convergent in
some sense. Remark from (2.4) that ug, > 0 although g < 0, provided to take the parameter
h sufficiently large.

Proposition 2.7. Assume that h > 0 and is sufficiently large, b is a positive constant, ¢ > 0
on I'y x [0, T, then we have

g<0inQx[0,T]=0<u, <binQUT x[0,T7, (2.32)
Proof. Taking in (2.1) u = ug, (t) and v = ug, (t) — (ug, (t) — b)™, we get
<ugh ’ (ugh o b)+> + ah(ugh ) (ugh o b)Jr) - q)(ugh - (ugh - b)Jr) + (I)(ugh)

< (g, (ug, —b)") + h/r b(ug, —b)tds, a.e.t€]0,T]
1

as b is constant we have a(b, (ug, (t) —b)") =0 so a.e. t €]0,T

57 (16000 (0) = 7 13) + (g, =00 g, =0y [ gy, — )
< (0. Gty =0)) 4 b [ blag, =) s Bl — (g, = D)) = D)

as ug, (0) = b and

P (ug, — (ug, — b)+) — O(ug,) = /F q(lug, — (ug, — b)ﬂ — |ug,)ds <0,

1 +12 ’ - +
100, (1) =0 I+ [ anCag, ()= 0)* (g, (1) = 1))t <

T
< /O (9(2) , (g (£) — b)*)dt < 0,

thus (2.32) holds. O

10



Proposition 2.8. Assume that h > 0 and is sufficiently large. Let g, g1, go in L?(0,T, H),
q € L?(0,T,L*(T'3)) and b is a positive constant, we have

G2 <91 <0 Qx[0,T] and hy <hi =0 < ugypy, < Ugp, in Q x [0,77, (2.33)
g<0inQx[0,T] = 0<ug <uginQx[0,T], Yh>D0. (2.34)
[0l

hy < h1 = |lug,, — ug, lr201,v) < m”b — Ugy, lz20m12(ry)) (1 — h2)  (2.35)

Proof. To check (2.33) we take first v = wg,p, (t) + (Ugyny (£) — ugyn, (£)) T, for ¢ € [0,T], in
(2.1) where u = ug,p,, g = g1h1 and h = hy, then taking v = ug,n, (t) — (Ugyhy (£) — ug,n, (€))7
in (2.1) where u = ug,p,, g = g2ho and h = hy, adding the two obtained inequalities, as

(I)(ughhl + (ug2h2 - u91h1)+) - (I)(uglhl) + ‘1>(u92h2 - (u92h2 - u91h1)+)) - q)(ugzhz) =0
we get

L9 2

_§a (H(u92h2 - u91h1) ) - a(u92h2 — Ugihy » (ug2h2 - u91h1)+)

+/I‘ (hluglhl - h2u92h2)(u92h2 - uglh1)+d5 > (gl — 92, (u92h2 - uglh1)+)
1
+(h1 — h2)/ b(tgohy — Ugyny ) Tds, a.e.t €]0,T],
Iy

so by integration on 0, T[, we deduce
1 ) r
5”(”92/12 (T) - Ugihy (T))+||H + /0 ah2((“g2h2 - u91h1)+ ) (u92h2 — Ugihy (t))+)dt <

T T
/O (92 — 91, (ug2h2 (t) - uglh1)+)dt + (hl - hQ)/O /F (uglhl - b)(ug2h2 - uglh1)+d8dt7
1

and from (2.32) we get (2.33). To check (2.34), let W = ug, (t) — u4(t), and choose, in (2.1),
v =ug, (t) — WT(t), so a.e. t€]0,T]|

(g, » WT) +an(ug, , W) < +®(ug, — W) — ®(ugy,) + (g, W) + h/ bW tds,
I
as ug = b on I't X [0,7] we obtain a.e. t €]0,T]
(g, s W) +alug, , WH) +h [ [WHPds < (g, W) + ®(ug, — W) — B(ug,). (2.36)

I

Then we choose, in (1.1), v = u,(t) + W(t), which is in K because from (2.32) we have
W+ =0onTy x[0,7T], so

(g, WE (1)) + alug, W) > (g, W) — ®(ug + W) + ®(uy), ae.tel0,T[. (2.37)

So from (2.36) and (2.37) we deduce that

1 T
S @+ [ e whae e [ s
1

< (I)(ugh - W+) - (ID(ugh) + (I)(ug + W+) - (I)(ug) =0.
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Then (2.34) holds. To finish the proof we must check (2.35). We choose v = ug, (t) in (2.1)
where u = ug, (t), then choosing v = uy, (¢) in (2.1) where u = ug, (1), we get

_<ugh2 - ’[Lghl » Ugp, — ugh1> - a(ugh2 - Ugy, » Ugp, — ughl)

—ha /I‘ Ughy (ugh2 — Ugp, )ds + /I‘ Ugp, (ugh2 — Ugp, )ds >
1 1

—(hg — hl)/ b(ug,, — ug, )ds, a.e.t€]0,T],
1N

then
1 2 T
1, (1) =, (D + [ s, = 0, 0, = v, )
T
< (h1 — ho) / (ugy, — b)(ug,, — ug, )dsdt.
0o Jry
So
1 2 . 2
§Hu9h2 — Ugp, HLoo(o,T,H) + A1 min{1, h2}||ugh2 — Ugp, ||L2(0,T,V)
< [[oll(h1 — h2)[Ib — ug, lz2(0,r12(r1)lI%gn, — tgn, L2007,V
where v is the trace embedding from V to L?(I';). Thus (2.35) holds. O

3 Optimal Control problems and convergence for h — 400

In this section, b is not constant but a given function in L?(]0,T[xT1). We prove first the
existence and uniqueness of the solution for the optimal control problem associated to the
parabolic variational inequalities of second kind (1.1), and for the optimal control problem
associated also to (2.1), then in Subsection 3.1 we prove (see Lemma 3.2 and Theorem 3.3)
the convergence of the state ug,, p and the optimal control go,,, when the coeflicient h on
I'1, goes to infinity.

The existence and uniqueness of the solution to the parabolic variational inequalities of
second kind (1.1) and (2.1), with the initial condition (1.2), allow us to consider g — u4 and
g+ ug, as functions from L*(0,T, H) to L?(0,T,V), for all h > 0.

Using the monotony property (2.8) and (2.9), established in Theorem 2.5, we prove in
the following that J and Jj, defined by (1.3) and (1.8), are strictly convex applications on
L%*(0,T, H), so [27] there exists a unique solution g, in L?(0,T, H) of the Problem (1.9), and
there exists also a unique solution g, in L?(0,T, H) of Problem (1.7) for all h > 0.

Theorem 3.1. Assume the same hypotheses of Proposition 2.1. Then J and Jp, defined
by (1.3) and (1.8) respectively, are strictly convex applications on L?(0,T, H), so there erist
unique solutions gop and gop, in L*(0,T, H) respectively of the Problems (1.9) and (1.7).

Proof. Let u = ug, and ug,;, be respectively the solution of the variational inequalities (1.1)
and (2.1) with g = g; for i = 1,2. We have

HU3(IU')H%Q(O,T,H) = M2”ugl ”%2(0,T,H) + (1= /1')2”ugz|’%2(0,T,H) + 201 — p)(ugy  ug,)
then the following equalities hold

HU3(N)H%2(0,T7H) = pillug, ”%2(0,T,H) + (1 = p)ug, H%Q(O,T,H)

—p(1 = p1)|[ug, — ug, H%%O,T,H)? (3.1)

12



||U3h(ﬂ)||%2(0,T,H) = /‘Hugth%%o,T,H) +(1- N)HugzhH%?(o,T,H)

—p(1 = p)llugon — ugth%Q(O,T,H)' (3.2)
Let now p € [0,1] and g1, 92 € L*(0,T, H) so

Iz I—p
ud (g1) + (1 = p)J(g2) — J(g3(n)) = §||ug1\li2(o,T,H> + (27)||ugz||%2(07T,H)

1 M
_5”u4(u)”%Q(O,T,H) Y {MHng%%o,T,H) + (1= M)HQ2H%2(0,T,H) - ”93(/1')“%2(0,T,H)}

using (3.1) and g3(u) = pg1 + (1 — u)ge we obtain

1
I (91) + (1= 1) (92) = (g3 () = 5 (s () F 202,10y = I0a (1) F 02,11
1 M
+§M(1 — p)lur — UZH%%O,T,H) + 7#(1 =l — 92”%2(0,T,H)= (3.3)

for all u €]0,1[ and for all g1, go in L?(0,T, H). From Proposition 2.1 we have u4(y) > 0
in Q x [0,7] for all u € [0,1], so using the monotony property (2.8) (Theorem 2.5) and we
deduce

”u4(M)H%Q(O,T,H) < ”u?’(M)H%Q(O,T,H)' (3.4)

Finally from (3.3) the cost functional J is strictly convex, thus [27] the uniqueness of the
optimal control of the problem (1.9) holds.

The uniqueness of the optimal control of the problem (1.7) follows using the analogous
inequalities (3.3)-(3.4) for any h > 0. O

3.1 Convergence when h — +o0

In this last subsection we study the convergence of the state ug,, » and the optimal control
Jopp,» When the coefficient h on I'1, goes to infinity. For a given g in L?(0,T, H) we have first
the following estimate which generalizes [36, 37].

Lemma 3.2. Let ug, be the unique solution of the parabolic variational inequality (2.1) and
ug the unique solution of the parabolic variational inequality (1.1), then

Ug, — Ug € L*(0,T,V) strongly as h — o0, Vg € L*(0,T, H).

Proof. We take v = u,4(t) in (2.1) where v = ug,, and recalling that ug(t) = b on I'; x]0, T,
taking wug, (t) — ug(t) = ¢p(t) we obtain for h > 1, a.e. t €]0,T]

(Dhy d1) + a1(en , dn) + (h —1) g bn|*ds < —(ig, dn) — alug, dn) + (g, ¢n) + 2(dn),

so we deduce that
0nl o + 191320y + (0 = Dll6all
o 1PhilLee (0,1, H) hilL2(0,1,v) hilL2(0,7,L2(T))
is bounded for all h > 1, then |lug, [|r20,7,v) < [@nllz20,1,v) + Ugllz2(0,7,v) is also bounded

for all h > 1. So there exists n € L?(0,T,V) such that u, — 7 weakly in L?(0,7,V) and
ug, — b strongly on I'y when h — 400 so 7(0) = b.
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Let ¢ € L*(0,T, V) and taking in (2.1) where u = ug, , v = ug, (t) & ¢(t), we obtain

<ugh’ 90> = _a(ugh’ 90) + (ga 90) a.e.t G]O’ T[

As [lug, [|2(0,7,v) is bounded for all A > 1, we deduce that [|ig, [|12(0,7,1y) 18 also bounded for
all h > 1. Following the proof of Lemma 2.3, we conclude that

ug, — nin L*(0,T,V) weak, and in L°°(0,T, H) weak star, }

and 4g, — 7 in L?(0,T, V') weak. (35)

From (2.1) and taking v € K so v = b on I';, we obtain

<ugh’v - ugh> + a’(ugh’v - ugh) - h/F |ugh - b|2d5 >
1

D (ug,) — ®(v) + (9,v — ug,) Vo e K, a.e.te€]0,T],
then
(g, , v — ug,) + a(ug, , v —ug,) > P(ug,) — P(v) + (9,v —ug,) Vv e K, ae.tecl0,T]. (3.6)
So with (3.5) and the same arguments as in (2.14)- (2.19), we obtain
(nyv—mn)+an,v—n)+ev)—e(n) >(g,v—n YvekK, aetecl0,T]

and 7(0) = b. Using the uniqueness of the solution of (1.1)-(1.2) we get that n = u,.
To prove the strong convergence, we take v = ug4(t) in (2.1)

(g, g — g, ) + an(ug,, ug — ug, ) + ®(ug) — P(ug,) > (9,uy — ug,)

+h/ b(ug — ug, )ds, a.e.t €]0,T]|
I
thus as ug = b on I'1x]0, T, we put ug, —ug = ¢p, so a.e. t €]0,T

(S, dn) + a(on, dn) + h/F (o 2ds + ®(ug,) — P(ug) < (g, ¢p) + alug, ¢n) + (g, 0n),

SO

1 .
§”¢h”%w(o,T,H) + Aullon 1 F2 07y + Plug,) — 2(ug) < —/0 (tg(t), dn(t))dt
T

T
- [t ontra+ [ o0 0n 010t
0 0

using the weak semi-continuity of ® and the weak convergence (2.30) the right side of the
just above inequality tends to zero when h — +o00, then we deduce the strong convergence
of ¢p = ug, —ug to 0 in L?(0,T,V) N L>®(0,T,H), for all g € L*(0,T,H). This ends the
proof. O

We give now, without need to use the notion of adjoint states [27], the convergence result
which generalizes the result obtained in [28] for a parabolic variational equations (see also
[3, 6, 23, 24]).
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Theorem 3.3. Let ug,, h, Gopj, and ug,,, gop be respectively the states and the optimal control
defined in the problems (1.9) and (1.7). Then

hEr—fI—loo letgop . = tigop 200y = hgrfoo g0, n = gyl Lo (0,7, 1)
- thfoo Hugoz)hh - ugopHL2(0,T,L2(F1)) =0, (3.7)
W llgop, = Goplliz0.7.m) = 0- (3.8)

Proof. We have first

1 2 M 2 1 2 2
In(Gopn) = §”ugophh”L2(o,T,H) + 7“90}0}1”L2(O,T,H) < §”u9h”L2(O,T,H) + 7”9HL2(0,T,H)=

for all g € L?(0,T, H), then for g = 0 € L?(0,T, H) we obtain that

1 1
In(Gop,) = §||ugophh||%2(O,T,H) + 7”90ph||%2(0,T,H) < §||Uoh||%2(o,T,H) (3.9)

where ug, € L?(0,T,V) is the solution of the following parabolic variational inequality

(1, , v — ug, ) + ap(uo,,v — ug, ) + ®(v) — P(ug, ) > h/ b(v — g, )ds, a.e.t €0, T
I'1

for all v € V and ug, (0) = up. Taking v = u, € K we get that |[ug, — upl/r2(0,7,1) is bounded
independently of h, then [lug, || 12(0,7,#) is bounded independently of h. So we deduce with
(3.9) that |lug,,, .| z2(0,7.1r) @nd [|gop, |2 (0,7, 21y are also bounded independently of h. So there

exists f and 7 in L?(0,T, H) such that
Jopr, — f in L*0,T,H) (weak) and Ug,,, , =1 in L*0,T,H) (weak). (3.10)
Taking now v = uy,,(¢) € K in (2.1), for t €]0,T[, with u = ug,, » and g = gop,, we obtain
<ugophh’ugop - ugophh> + a’l(ugophh’ugop - ugophh,)

+(h - 1)/F ugophh(ugop - ugophh)ds + ¢(ugop) - (b(ugophh) Z
1

(Gopn+ Ugop — Ugop, h) + h/ b(ug,, — Ug,,, n)ds, a.e.t €]0,T]
1N

as ug,, = b on I'y x [0,T], taking ug,, — Ugpp, h = ¢, we obtain
(h, dn) + a1(pn, o) + (h — 1) i o 2ds < —(Gopy+ b1)
1

+/ qlénlds + (tg,,, on) + alug,,, ¢n), a.e.t €]0,T]
I'>

then
1 2 2 T 2
31000 an + Ml + =) [ [ jonto)Pas
T T T
< [ @ cnenies [ [ atonolasde+ [, 0). 0000
T
+/ a(Ug,y, n(t), Pn(t))dt.
0
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There exists a constant C' > which does not depend on A such that
onllz20,m,v) = (Wgop, b — UgoplL20,7v) < €, énllLcr,m < C
T
and (h — 1)/ / |Ugop, h — b2dsdt < C,
0 I

then n € L?(0,T,V) and

—n n L*0,T,V) weak and in L>(0,T, H) weak star (3.11)

ugophh

ugophh % b Zn L2(O’ T? L2 (Fl)) Strong’ (312)
son(t) € K for all t € [0,T]. Now taking v € K in (2.1) where u = uy,, , and g = gop, s0
<ugophh’ v = ugophh> + a'h(ugophh’v - ugophh) + @('U) - Q(ugophh) 2 (goph’/v - ugophh)

+h/ b(v — ug,, n)ds, a.e.t €]0,T]
It

as v € K so v=>0on I'1, thus we have

<ugophh’ugophh - U> + a’(ugophh7ugophh - U) + h/[: ’ugophh - b’2d8 + Q(ugophh) - Q(/U)
1
< (—(gopn,v — ug,, ,) a.e.t€]0,T].

Thus

<1:Lgophh’ugophh - U> + a(ugophh’ugophh - U) + (b(ugophh) - Q(/U) S _(QOP}NU - ugophh)
a.e.t €]0,T].

Using (3.10) and (3.11) and the same arguments as in (2.14)- (2.19), we deduce that
<77av—77>+a(777?1—77)+q)(”)_‘1>(77) > (f,’U—T]), VU€K7 a'e'te]ovTL

so also by the uniqueness of the solution of (1.1) we obtain that

up =1. (3.13)
We prove that f = g,p. Indeed we have
1 M
J(f) = 5”77“%2(0,T;H) + 7||f||%2(o,T;H)

. 1 2 M 2 .
< %gﬂg {5”“90phhHL2(o,T;H) + 7”gothL2(o,T;H)} = %gﬂ{fg In(Gop,)

. 1 2 M, 2
< liminfJ,(g) = lim inf {§||uthL2(O,T;H) + 7||9HL2(0,T;H)}

h—-+o00

using now the strong convergence ug, — ug as h — 400, V g € H (see Lemma 3.2), we
obtain that

o 1 M
J(f) < liminf Jp,(gop,) < §”ugH%Q(O7T;H) + 7|’9H%2(07T;H) =J(g), Vge LZ(O,T; H)(3.14)

h—+o00
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then by the uniqueness of the optimal control problem (1.9) we get

f = Yop- (3.15)
Now we prove the strong convergence of ug,, » to n = uy in L2(0,T,V) N L>®(0,T,H) N
L?(0,T, L*(T)), indeed taking v = 1 in (2.1) where u = Ug,,, h a0d g = gop,,, as 1(t) € K for
t €[0,7], son =bon I';, we obtain we get
<ugophh - 7:], ugophh - 77> + a'l(ugophh - 77’ ugophh - ”7) + (h - 1)/1_‘ |ugophh - 77|2d8
1
+¢(ugophh) - @(T]) S (goph’ugophh - n) + <T’7 ugophh - 77> + a’(777 ugophh - T’)

thus

1 2 2
§”ugophh - 77HL°°(O,T;H) + Al“ugophh - 77HL2(0,T,V)

T
4 / [®(ug,,, ) — D)}t + (h— Dllug,, = 1l0 10500
T T
< /0 (Gopn (£), gy, 1 (8) — n(t))dlt + /0 R

T
+ [ atn(®.n(t) = g, ()i

Using (3.11) and the weak semi-continuity of ® we deduce that

hgr}rloo Hugophh - 77HL°°(O,T;H) = hliffoo ||ugophh - 77||L2(0,T,V)

= ”ugophh - 77HL2(07T,L2(F1)) =0,

and with (3.13) and (3.15) we deduce (3.7). As f € L?(0,T, H), then from (3.14) with g = f
and (3.15) we can write

1 M
J(f) = J(9op) = §||ugop||%2(O7T,H) + 7”901)”%2(0,T,H)
o o]l 2 M 2
< %gfg In(Gopy,) = %gfg §HugophhHL2(0,T,H) + EHQOIMHL?(O,T,H)
< lim J =J 3.16
< hiffw n(9op) ((gop) ( )
and using the strong convergence (3.7), we get
hEI—fr—loo ||gothL2(o,T,H) = ||gop||L2(o,T,H)- (3.17)
Finally as
ll90ps, — g()p”%?(o,T;H) = ch)th%?(o,T;H) + ||90p‘|%2(0,T;H) = 2(gopy, » Gop) (3.18)
and by the first part of (3.10) we have
hEToo (Gopn+ op) = ||gopH%2(o,T,H),
so from (3.17) and (3.18) we get (3.8). This ends the proof. O
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