
HAL Id: hal-00566050
https://hal.science/hal-00566050

Submitted on 8 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rotating magnetic field effect on convection and its
stability in a horizontal cylinder subjected to a

longitudinal temperature gradient
D.V. Lyubimov, A.V. Burnysheva, Hamda Ben Hadid, T.P. Lyubimova,

Daniel Henry

To cite this version:
D.V. Lyubimov, A.V. Burnysheva, Hamda Ben Hadid, T.P. Lyubimova, Daniel Henry. Rotating mag-
netic field effect on convection and its stability in a horizontal cylinder subjected to a longitudinal tem-
perature gradient. Journal of Fluid Mechanics, 2010, 664, pp.108-137. �10.1017/S0022112010003678�.
�hal-00566050�

https://hal.science/hal-00566050
https://hal.archives-ouvertes.fr


J. Fluid Mech. (2010), vol. 664, pp. 108–137. c© Cambridge University Press 2010

doi:10.1017/S0022112010003678

Rotating magnetic field effect on convection
and its stability in a horizontal cylinder subjected

to a longitudinal temperature gradient

D. V. LYUBIMOV1, A. V. BURNYSHEVA2, H. BEN HADID3,

T. P. LYUBIMOVA2
AND D. HENRY3†

1Perm State University, 15 Bukirev Street, 614990 Perm, Russia
2Institute of Continuous Media Mechanics UB RAS, 1 Koroleva Street,

614013 Perm, Russia
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A rotating magnetic field (RMF) is used in crystal growth applications during
the solidification process in order to improve the crystal quality. Its influence on
the convective flows in molten metals and on their stability is studied here in the case
of a horizontal infinite cylindrical channel subjected to a longitudinal temperature
gradient. The steady convective flows, which correspond to the usual longitudinal
counterflow structure, with four vortices in the cross-section for non-zero Prandtl
number, Pr, are modified by the RMF (parametrized by the magnetic Taylor number
Tam). For zero Prandtl number, the flow in the cross-section corresponds to circular
streamlines and the longitudinal flow structure is moved in the direction of the
magnetic field rotation, with a decrease in its intensity and an asymptotic variation
as 1/Tam. For non-zero Prandtl numbers, depending on the respective values of Tam

on one side and Prandtl and Grashof numbers on the other side, different structures
ranging from the circular streamlines with transport by rotation of the longitudinal
velocity and the temperature field, to the more usual counterflow structure almost
insensitive to the RMF with four cross-section vortices, can be obtained. The decrease
in the flow intensity with increasing Tam is also delayed for non-zero Pr, but the same
asymptotic limit is eventually reached. The stability analysis of these convective flows
for Tam = 0 shows a steep increase of the thresholds around Pr = Prt,0 ≈ 3× 10−4,
corresponding to the transition between the usual counterflow shear mode and a
new sidewall shear mode. This transition is still present with an RMF, but it occurs
for smaller Pr values as Tam is increased. Strong stabilizing effects of the rotating
magnetic field are found for Pr < Prt,0, particularly for Pr = 0 where an exponential
increase of the threshold with Tam is found. For Pr > Prt,0 (i.e. in the domain where
the sidewall instability is dominant), in contrast, the stabilization by the RMF is
weak.
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1. Introduction

During the growth of a single crystal from a melt, oscillatory flows are generated in
the melt, which lead to fluctuations in the convective heat transfer from the melt to the
crystal and to fluctuations in the rate of solidification. The dopant segregation in the
crystal is affected and spatial oscillations of the dopant concentration in the crystal,
called striations, can appear (Müller & Wiehelm 1964). The control of the melt mo-
tions is then necessary to improve the quality of the crystal. Both static magnetic fields
and rotating magnetic fields (RMFs) can be used for the flow control in the melt, and
the benefits which can be obtained in terms of crystal quality are described by Utech
& Flemings (1966) and Dold & Benz (1999), respectively. The two fields, however,
act on the melt flow in different ways: the static magnetic field has rather a braking
effect whereas the RMF induces a rotating motion in the melt. In this paper, we will
consider an RMF and see how it can modify the flow properties in a differentially
heated cylindrical cavity typical of the horizontal Bridgman growth technique.

Convection in enclosures with differentially heated vertical boundaries is typical
of many engineering systems involving heat transfers such as crystal growth, solar
energy collection, the welding process, nuclear reactors, and energy efficient design
of buildings. The stability of such convection in low-Prandtl-number fluids typical of
crystal growth has been widely investigated in the literature. The first study concerned
the buoyant flows generated by a horizontal temperature gradient in a fluid layer
confined between two horizontal walls of infinite extent (Hart 1972; Laure & Roux
1987; Kuo & Korpela 1988) and different instabilities were found depending on
the Prandtl number Pr. Two-dimensional finite length enclosures heated from the
side (GAMM workshop, Roux 1990) were then considered. The stability of the
flows in such situations was investigated by different authors as Winters (1988),
Skeldon, Riley & Cliffe (1996), and Gelfgat, Bar-Yoseph & Yarin (1999). These
studies clearly illustrated that for two-dimensional enclosures, there are different
perturbation modes which become the more dangerous when the longitudinal aspect
ratio (length/height) is varied. A few numerical simulations concern three-dimensional
parallelepipedic enclosures (Henry & Buffat 1998; Wakitani 2001; Henry & Ben Hadid
2007). These studies (see particularly Henry & Ben Hadid 2007) pointed out that
the critical Grashof number for the occurrence of time-dependent flows and the type
of perturbations involved are strongly dependent on the Prandtl number and the
cavity aspect ratios (length/height and width/height). The experimental studies of the
time-dependent flows in such enclosures are few. After the pioneering study of Hurle,
Jakeman & Johnson (1974), which reports measurements of temperature oscillations
in molten gallium in a cavity with moderate aspect ratios (typically 2.5× 1.1× 1 for
length×width× height), we can mention the study of Kamotani & Sahraoui (1990)
in mercury-filled cavities, which points out the influence of the aspect ratios on the
onset of oscillations, and the more recent studies of Braunsfurth & Mullin (1996)
and Hof et al. (2004) in gallium-filled cavities, which rather focus their studies on
the influence of the Prandtl number. These studies also point out the difficulties in
controlling the thermal properties of the boundaries.

Compared to all these results obtained for rectangular cavities, the similar
convection problem in horizontal circular cylindrical cavities has received less
attention. Concerning the structure of the steady flow, we can mention the analytical
approach of Bejan & Tien (1978), who give an asymptotic solution for the velocity
and temperature distributions in the middle portion of a long horizontal pipe with a
conducting wall, and the numerical approach of Bontoux et al. (1986), who point out
a transition between a core-driven regime and a boundary-layer-driven regime when
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the temperature difference between the two ends of the cylinder is increased. The
three-dimensional structure of the flow is also studied in the experiment of Davoust
et al. (1999) in a mercury-filled cell submitted to a vertical magnetic field. Large
values of the Grashof number induce a boundary-layer-driven regime which transits
to a core-driven regime when the magnetic field intensity is increased. Concerning the
transition to oscillatory flows in low-Prandtl-number fluids, interesting results have
been obtained numerically by Vaux, Ben Hadid & Henry (2006). The aspect ratio
A (A = length/diameter) of the cylinder (1.5 6 A 6 10) is shown to strongly affect
the onset of oscillatory flows: the corresponding critical Grashof number strongly
decreases when A is increased from A = 1.5 to 3, then strongly increases until A = 8
and eventually decreases more slowly until A = 10.

The RMF used in most crystal-growth processes is a spatially uniform, transverse
magnetic field which rotates at a constant angular velocity, ω, around the centreline
of the cylindrical cavity containing the melt. The electromagnetic body force
which is produced consists of a steady axisymmetric azimuthal force, and a
periodic three-dimensional force which is negligible in crystal-growth applications
(Martin Witkowski, Walker & Marty 1999). Experimental observations of Dold &
Benz (1997) indicate that the RMF can lead to modifications of fluid flow and
heat transport in vertical Bridgman configurations. Values of field strength of a few
milliteslas are sufficient to damp temperature fluctuations in the melt and to decrease
striation amplitudes in the crystal, whereas more than 100 milliteslas are required in
the case of a static magnetic field (Dold & Benz 1995). When the intensity of the
RMF is further increased, oscillatory flows can be triggered. Different studies have
determined the stability of the rotating flow induced by the RMF. The first study
used time-stepping codes in a two-dimensional axisymmetric approximation (Barz
et al. 1997; Kaiser & Benz 1998; Mössner & Gerbeth 1999). They found an increase
of the critical magnetic Taylor number Tam (based on the radius) when the aspect
ratio (height/radius) is decreased. A discrepancy exists between the results, which
shows the difficulties in computing such situations. Grants & Gerbeth (2001) directly
solved the stability problem in axisymmetric conditions and found linear thresholds
associated to perturbations which are not Taylor–Görtler vortices. Small finite-
amplitude perturbations in the form of Taylor–Görtler vortices, however, can give rise
to instability in the linearly stable regime. This can explain the discrepancy between
the previous results. Grants & Gerbeth (2002) then accounted for three-dimensional
perturbations and found that the most dangerous perturbations at the linear stage
are not axisymmetric but correspond to modes with azimuthal wavenumbers m = 1,
2 or 3, depending on the aspect ratio. Three-dimensional simulations by Ben Hadid,
Vaux & Kaddeche (2001) mention the appearance of steady Taylor–Görtler vortices
at values of the magnetic Taylor number which can be correlated with the aspect ratio
of the cavity. Oscillatory instabilities appear for stronger magnetic Taylor numbers:
two types of instabilities with very different frequencies are found for increasing
magnetic Taylor numbers, but unexpected restabilizations are found in intermediate
Tam ranges.

The influence of the RMF on buoyant flows is considered numerically in a simple
configuration by Mössner & Gerbeth (1999): a stabilizing influence is obtained which
is interpreted as the result of partly counterbalancing flows. The main studies concern
the Rayleigh–Bénard configuration. Volz & Mazuruk (1999) first presented a linear
stability analysis for an infinitely long cylinder. They demonstrated that the RMF
increases the critical Rayleigh number for asymmetric flow modes but does not
affect the onset of instability for axisymmetric modes, and that the instability first
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Figure 1. Configuration studied.

develops in the form of a single asymmetric meridional roll rotating around the
axis of the cylinder. Volz & Mazuruk (2001) then presented an experimental study
corresponding to liquid gallium contained in a cylinder heated from below with
aspect ratio (height/diameter) equal to 1, which is a main contribution in this field.
For small magnetic Taylor numbers the critical Rayleigh number at which instabilities
are triggered is strongly increased with respect to its value without an RMF and the
observed flow is consistent with a single roll rotating around the cylinder axis. For
large magnetic Taylor numbers, in contrast, the stationary flow domain is bounded by
a critical value of the magnetic Taylor number, which is independent of the Rayleigh
number.

In this paper, we want to study the influence of RMFs on the convective flows in a
differentially heated horizontal cylindrical cavity typical of the horizontal Bridgman
crystal growth technique. As fully three-dimensional numerical calculations to simulate
such convective flows in long cylinders (Vaux et al. 2006) or to take into account the
flows generated by the RMF (Ben Hadid et al. 2001) are still difficult to perform
with sufficient accuracy, we choose to derive a model which considers the three
components of the velocity and the temperature in the cross-section of an infinite-
length cylindrical channel. Both steady-state calculations and stability analyses with
respect to fully three-dimensional perturbations are performed. Such a method was
previously used in the case of a rectangular cross-section channel and for an applied
static magnetic field (Lyubimova et al. 2009; Lyubimov et al. 2009). The base state will
be first studied in detail, both analytically and numerically, to see how the convective
flow structure is changed when the RMF is applied. A linear stability analysis is then
performed to determine how the base state is destabilized by small three-dimensional
perturbations periodical in the direction of the channel axis, and to investigate the
dependence of the instability thresholds and the perturbation structures on the Prandtl
and magnetic Taylor numbers.

2. Formulation of the problem, governing equations and boundary conditions

We consider the convective flows of an electrically conducting fluid with density
ρ, kinematic viscosity ν and electrical conductivity σ in a horizontal cylinder with
circular cross-section of radius R (figure 1). A uniform horizontal temperature gradient
(∇T )∗ is imposed at the lateral boundary, and the system is subjected to a uniform
magnetic field of induction B orthogonal to the cylinder axis and rotating around
this axis with a constant angular frequency ω.
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The models developed to describe flows of conducting liquids in an RMF have
been presented in many previous studies (for example in Barz et al. 1997; Kaiser
& Benz 1998; Martin Witkowski et al. 1999). For crystal growth applications, it has
been shown that the magnetic field variations in the melt are negligible and that
the flow does not influence the driving magnetic body force. The first condition is
principally fulfilled because the skin depth (penetration length of the RMF) is much
larger than the radius of the cylinder, which can be expressed by (µpσω)−1/2 ≫ R or
µpσωR2 ≪ 1, where µp is the magnetic permeability of the melt. The influence of
the velocity in the melt on the magnetic field also has to be small, which corresponds
to low magnetic Reynolds number Rem = µpσVcR (Vc is a characteristic velocity in
the melt), a hypothesis really well-verified for melts in laboratory conditions (Moreau
1990). The second condition implies that the angular frequency is much larger than
any typical angular velocity in the melt, i.e. ω ≫ Vc/R. This condition can be expressed
in terms of the field characteristics as Ha2Re−1

ω ≪ 1, where Ha = BR(σ/(ρν))1/2 is
the Hartmann number and Reω = ωR2/ν is a Reynolds number associated with the
magnetic field rotation.

With these conditions, the time-averaged magnetic body force (which strongly
dominates the oscillating force part; see Martin Witkowski et al. 1999) has only an
azimuthal component. In the case of an infinitely long cylinder, this force depends
linearly on the radius r∗ and can be written as F = 0.5σωB2r∗eα , where eα is the unit
vector in the azimuthal direction.

The governing equations of the problem are the Navier–Stokes equations taking
into account the magnetic body force, coupled to the energy equation. Using R,
R2/ν, ν/R, ρ (ν/R)2 and (∇T )∗ R as scales for length, time, velocity, pressure and
temperature, respectively, these equations in their dimensionless form are

∂V

∂t
+ (V · ∇)V = −∇P + ∇2

V + GrT γ + Tamreα, (2.1)

∂T

∂t
+ V · ∇T =

1

Pr
∇

2T , (2.2)

∇ · V = 0, (2.3)

where the dimensionless variables are the velocity V = (U, W ) (U is the velocity in the
cross-section, W is the longitudinal velocity along the z-coordinate), the temperature
T and the pressure P . The non-dimensional parameters are the Grashof number,
Gr = gβ(∇T )∗ R4/ν2, the Prandtl number, Pr = ν/κ and the magnetic Taylor number,
Tam = ω σ B2R4/(2 ρ ν2). In these expressions, g is the acceleration due to gravity, β is
the thermal expansion coefficient and κ is the thermal diffusivity. γ is the unit vector
directed vertically upwards along the y-direction. The associated boundary conditions
applied on r = 1 are no-slip conditions and a fixed temperature distribution (purely
conducting walls), i.e. V = 0 and T = z (conductive profile). An additional condition
to solve the problem comes from mass conservation in the cylinder cross-section S,
∫

S
W dS = 0.

3. Basic flow

As in Lyubimova et al. (2009), we look for the basic flow solution in which the
velocity and the temperature deviation from the conductive state do not depend on
z:

U = U(r, α), W = W (r, α), T = z + Θ(r, α), (3.1)
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where r , α and z are the cylindrical coordinates. Then the pressure P is a linear
function of z (Lyubimova et al. 2009):

P = Gr rz sin α + Kz + Π(r, α), (3.2)

where K is a constant. (Note that we have assumed that the origin of the angular
coordinate α is the horizontal x-axis.) Accounting for (3.1) and (3.2), we can write
(2.1)–(2.3) in the form

∂U

∂t
+ (U · ∇) U = −∇Π + ∇2

U + Gr Θ γ + Tam reα, (3.3)

∂W

∂t
+ (U · ∇W ) = −Gr r sin α −K + ∇2W, (3.4)

∂ Θ

∂t
+ (U · ∇Θ) + W =

1

Pr
∇2Θ, (3.5)

∇ · U = 0. (3.6)

Note that in these equations the differentiations are restricted to the cross-section
plane. The constant K is determined from mass conservation in the channel cross-
section S,

∫

S
W dS = 0, which gives

K =
1

S

∫

S

∇2W dS =
1

S

∮

Γ

∂W

∂n
dΓ, (3.7)

where Γ is the boundary of the cylinder cross-section S and n is the normal to the
cylinder surface.

In § 3.3, we will see that both in the absence and in the presence of a magnetic field,
the basic flow solution exhibits a symmetry Sc with respect to the centre point of
the channel cross-section. For the basic flow, mass conservation is then automatically
satisfied and K = 0.

To calculate the basic flow in the general case of non-zero Prandtl number, it is
useful to introduce the stream function ψ and the vorticity Ω (related to the flow in
the cross-section, U = (U, V )) which are such that

U =
1

r

∂ψ

∂α
, V = −

∂ψ

∂r
, Ω = (∇× U)z = −∇2

sψ. (3.8)

The governing equations for the steady basic flow written in terms of stream function
and vorticity are

U · ∇sΩ = ∇2
sΩ + Gr

∂Θ

∂x
+ 2Tam, (3.9)

U · ∇sW = ∇2
sW − Gr r sin α, (3.10)

PrU · ∇sΘ = ∇2
sΘ − PrW, (3.11)

∇2
sψ = −Ω, (3.12)

with boundary conditions ψ = ∂ψ/∂r = Θ = W = 0 at r = 1. In these equations,
we use the differential operators ∇s = er (∂/∂r) + eα(1/r)(∂/∂α), where er is the unit
vector in the radial direction, and ∇2

s = (∂2/∂r2) + (1/r)(∂/∂r) + (1/r2)(∂2/∂α2).
The basic flow equations (3.9)–(3.12) in cylindrical coordinates are then discretized

using a finite difference method with second-order spatial derivatives and solved by
the Newton method. For the calculation at the singular point r = 0, the equations
are written in Cartesian coordinates and the derivatives along x and y are estimated
from the values of the fields taken at r = δr for α = 0 and π, and α = π/2 and 3π/2,
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(a) (b) (c)(b′)

Figure 2. Streamlines of the transverse flow (a), isolines of the longitudinal velocity (b, b′)
and isolines of the temperature field (c) for the basic solution at the critical threshold without
magnetic field (Tam = 0). Pr = 0.00001 (Grc = 5307) for (a–c), Pr = 0.001 (Grc = 37 466)
for (b′).

respectively (r = δr represents the circle of mesh points close to r = 0). The zero state
or the solution obtained at a smaller value of the Grashof number is used as an initial
guess for the Newton solver. The linear system (with band structure) obtained at each
Newton step is solved by the elimination method. Typical grids of 40× 160 points (in
radial and azimuthal directions, respectively) have been used to calculate the basic
solutions. The accuracy of the numerical solutions obtained for non-zero Pr has been
checked by comparison with analytical solutions. We can give two examples: the
curve of Wmax/Gr versus Tam numerically calculated for Pr = 0.0001 is found to be
very close to that obtained analytically for Pr = 0 in figure 3; the numerical solutions
obtained for Tam = 40 000 in figure 6 verify the analytical predictions derived for
large Tam.

3.1. Basic flow in the absence of a magnetic field

In the case of horizontal cylinders of rectangular cross-section (Lyubimova et al.
2009), it has been shown that for zero Prandtl number, i.e. when the temperature field
is ‘frozen’ to its conductive profile, the problem has a solution which corresponds to
a plane-parallel flow (W 6= 0, U = 0) proportional to Gr. For any non-zero values
of the Prandtl number, in contrast, the plane-parallel flow does not exist: all three
components of the flow velocity differ from zero and four vortices develop in the
cylinder cross-section. All these observations are also valid in the case of a cylinder
of circular cross-section.

Examples of the basic steady flow characteristics are shown in figure 2 for Pr =
0.00001 and 0.001. The plots are given for values of Gr corresponding to the onset
of instabilities. In these plots, the solid lines indicate positive values and the dashed
lines indicate negative values. The global flow consists of a large circulation, where
the fluid moves in the direction of the imposed temperature gradient in the lower part
of the cavity and in the opposite direction in the upper part. The interface between
the two counterflows is horizontal (figure 2b). A closer view on the isotherms in the
cross-section shows that the convective circulation drives hot fluid from the warmer
area in the upper part of the cross-section, whereas it drives cold fluid from the
colder area in the lower part. This creates a stable vertical stratification (figure 2c).
The four vortices which appear in the cross-section (figure 2a) are a consequence of
the temperature variations in the cross-section, between the core and the sidewalls.
In these vortices, the fluid circulates from the centre point of the cross-section to the
periphery in the vertical direction and back from the periphery to the centre point in
the horizontal direction. The temperature variations in the cross-section, as well as
the intensity of the vortices, grow proportionally to Pr. For large enough values of
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Pr (and subsequent values of Gr), the vortices can even lead to modifications of the
longitudinal flow structure (figure 2b ′).

3.2. Rotating magnetic field effect on the basic flow

3.2.1. Zero Prandtl number

We first study the effect of the RMF on the basic flow in the case of zero
Prandtl number. Without an RMF, there is no flow in the cross-section for Pr = 0
(U = 0). With an RMF, the flow in the cross-section, solution of (3.3) with Θ = 0, is
axisymmetric and given by

U = 1
8
Tam(1− r2)reα. (3.13)

This flow is the same as that generated by the RMF in the absence of heating and
corresponds to circular streamlines in the cross-section. Substituting this solution into
(3.5), we obtain the following equation for the longitudinal velocity W :

1

8
Tam(1− r2)

∂W

∂α
= ∇2

sW − Gr r sinα. (3.14)

We look for the solution of (3.14) in the form

W (r, α) = GrIm(W(r)eiα), (3.15)

where Im denotes the imaginary part, and thus obtain an equation for W(r),

W′′ +
1

r
W′ −

1

r2
W+

i

8
Tam(r2 − 1)W = r, (3.16)

with the boundary condition

W = 0 at r = 1. (3.17)

The solutions of this equation are expressed through the Whittaker functions and
integrals of these functions.

Small values of the magnetic Taylor number. For small values of Tam, the solution of
(3.16) and (3.17) can be represented in the form of series with respect to Tam,

W =W0 + TamW1 + · · · (3.18)

where

W0 = 1
8
r(r2 − 1), (3.19)

W1 =
i

3072
r(1− r2)(r4 − 3r2 + 3). (3.20)

At zero order, we then have

W0(r, α) =
Gr

8
r(r2 − 1) sin α. (3.21)

This solution describes the convective flow at Pr = 0 in the absence of a magnetic
field. It corresponds to parallel counterflows separated by a horizontal interface at
y = 0, similar to what is shown in figure 2(b) for Pr = 0.00001. The effect of the
magnetic field at first order is described by

W1(r, α) =
GrTam

3072
r(1− r2)(r4 − 3r2 + 3) cosα. (3.22)

The fact that W1 is purely imaginary (or the factor cos α in W1) indicates that, in
the presence of a magnetic field, the interface between the counterflows will move
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Figure 3. Maximal longitudinal velocity (Wmax/Gr) as a function of the magnetic Taylor
number Tam for three values of the Prandtl number (Pr = 0, 0.001 and 0.01). For non-zero
Pr, Wmax/Gr which still depends on Gr has been plotted for Gr = 10 000.

from its horizontal position at Tam = 0 and become inclined. This inclination of
the interface occurs in the direction of the magnetic field rotation and is due to the
drag induced by the circular flow U (3.13). Finally, note that the ratio of W1 and W0

amplitudes is given by |W1|/|W0| ≈ Tam/384.

Limit case of large values of the magnetic Taylor number. In the limit case of large
Tam, the solution of (3.16) and (3.17) is of the boundary-layer type. For the bulk flow,
retaining only the leading terms in (3.16), we obtain

W =
8i

Tam

r

1− r2
. (3.23)

At first non-vanishing order, the bulk flow is then expressed by

W (r, α) =
8Gr

Tam

r

1− r2
cosα. (3.24)

The factor cos α indicates that, in this approximation of large Tam, the interface
between the counterflows is vertical in the bulk. Moreover, the flow intensity decreases
with the increase of Tam, i.e. the RMF suppresses the convective flow.

Finite values of the magnetic Taylor number. For finite values of Tam, the solution
of (3.16) is expressed through the Whittaker functions. A numerical estimate of the
longitudinal velocity W in the cross-section is thus obtained.

In figure 3, we can see the dependence of the maximal W velocity on the magnetic
Taylor number for Pr = 0. As W is proportional to Gr for Pr = 0, we chose to
plot Wmax/Gr which is independent of Gr. (Note that the plot is given in a log–log
scale.) We see that the asymptotic behaviour at large Tam, which corresponds to
Wmax ∼ (1/Tam), is already observed for Tam > 200. The isolines of the longitudinal
velocity W are then presented for different values of the magnetic Taylor number in
figure 4. As expected from the previous approximations, we see that with the increase
of Tam the flow structure is moved by the magnetic field rotation and the flow
becomes concentrated near the circular boundary, whereas in the weak flow remaining
in the bulk, the interface between the two counterflows becomes progressively
vertical. Again note that at Pr = 0 the structure of the flow only depends on the
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(a) (b) (c) (d)

Figure 4. Isolines of the longitudinal velocity W for different values of the magnetic Taylor
number Tam in the case of zero Prandtl number: (a) Tam = 0, (b) Tam = 100, (c) Tam = 1000
and (d ) Tam = 10 000.

magnetic Taylor number, whereas its intensity also linearly depends on the Grashof
number.

3.2.2. Small values of the Prandtl number

In the case of small Pr, the temperature field (at first order in Pr) is determined by
the equation

∇2
sΘ = PrW. (3.25)

Accounting for (3.15), we seek a solution for Θ in the form

Θ(r, α) = PrGrIm(ϑ(r) eiα). (3.26)

We obtain an equation for ϑ(r),

ϑ ′′ +
1

r
ϑ ′ −

1

r2
ϑ =W, (3.27)

with boundary conditions

ϑ(0) = 0, ϑ(1) = 0. (3.28)

The solution of equations (3.27) and (3.28) can be expressed as

ϑ(r) =
1

2

∫ 1

0

(r2W(rx)− rW(x))(1− x2) dx, (3.29)

which, in particular, gives

ϑ ′(0) = −
1

2

∫ 1

0

W(x)(1− x2) dx. (3.30)

Small values of the magnetic Taylor number. At small Tam, the rotation effect will be
small and we can assume that the drag induced through U will not perturb W , Θ

and Ω . Equation (3.10) for W is then reduced to

∇2
sW = Gr r sin α, (3.31)

which leads to the solution W0 (see (3.21)) already encountered at zero order in Tam

for Pr = 0.
The temperature deviation Θ is the solution of (3.11) which is reduced to (3.25).

The solution Θ1 is obtained by substituting W0 given by (3.19) in (3.29) and using
(3.26). We get

Θ1 =
Pr Gr

192
r(r2 − 1)(r2 − 2) sin α, (3.32)
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(a) (b) (c) (d)

Figure 5. Streamlines of the transverse flow for different values of the parameter a =
(11520Tam)/(PrGr2) in the small Pr approximation and for small values of Tam: (a) a = 0,
(b) a = 1, (c) a = 5 and (d ) a =100.

and using (3.9) and (3.12), we obtain the stream function ψ1:

ψ1 =
PrGr2

368640
r2(2r2 − 11)(r2 − 1)2 sin 2α +

1

32
Tam(r2 − 1)2, (3.33)

which is the summation of two contributions, the first one coming from buoyancy
and the second one coming from the RMF. The ratio of these contributions
(magnetic/buoyancy) is characterized by the parameter a = (11520Tam)/(PrGr2).
The isolines of the stream function for different values of a are plotted in figure 5.
We see the regular change of the flow structure from the four vortices induced by
buoyancy to the circular motion created by the RMF when a is increased. Note that
the rotation effect due to the magnetic field is already dominant for a = 5. As an
example, for Pr = 0.01 and Gr = 10 000, this corresponds to Tam ≈ 434.

Limit case of large values of the magnetic Taylor number. In the limit case of large Tam,
but if we still assume that (3.25) is valid (small Pr approximation), by substituting
(3.23) into (3.29) and using (3.26), we obtain

Θ(r, α) =
2Pr Gr

Tam

1− r2

r
ln(1− r2) cosα. (3.34)

In this small Pr approximation, the temperature deviation Θ in the bulk only follows
the modifications induced by the RMF on the longitudinal velocity W . The interface
between the hot and cold zones in the bulk is vertical, as is the interface between the
counterflows.

3.2.3. Finite values of the Prandtl number

For finite values of Pr, we will first see the limit case of large Tam values before
considering the more general situation with finite values of Tam.

Limit case of large values of the magnetic Taylor number. For large values of Tam

and finite values of Pr, the leading terms for the transversal velocities U and the
longitudinal velocity W in the bulk are given by (3.13) and (3.24), respectively. The
drag induced by U on Θ is important in this case and the energy equation (3.11) can
be written as

U · ∇sΘ = −W, (3.35)

from which we can easily find the expression of Θ in the bulk:

Θ(r, α) = −
64Gr

Ta2
m

sin α

(1− r2)2
. (3.36)
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(a) (b) (a′) (b′)

Figure 6. Isolines of the longitudinal velocity (a, a′) and isolines of the temperature field
(b, b′) for the basic solution at Pr = 0.1 and Gr = 100 for Tam = 500 (a,b) and Tam = 40 000
(a′, b′).

We see that in this case the interface between the hot and cold zones is horizontal.
This result differs from the result found for large Tam in the small Pr approximation
(see (3.34)) which indicated a vertical interface. In fact, the relevant parameter for
the different approximations of the temperature field at large Tam is the product
Pr Tam appearing in the term PrU · ∇sΘ of the energy equation when U is given by
(3.13). The asymptotic expression (3.34) associated to the energy equation (3.25) is
obtained for small values of this product, whereas the asymptotic expression (3.36)
associated to the energy equation (3.35) is obtained for large values of this product.
In the first case, the temperature distribution is governed by diffusive heat transfers,
but it follows the modifications induced by the RMF on W . This gives a rotation
of π/2 of the interface in the bulk. In the second case, in contrast, the temperature
distribution is governed by convective heat transfers (the parameter Pr related to
thermal dffusivity is not present in the expression (3.36)), except in the domain
near the boundary where thermal boundary layers will develop. The temperature
field in the bulk will still follow the modifications induced on W , but will also be
transported by the rotating flow U . This now gives a rotation of π of the interface
in the bulk, as indicated by the change of sign of Θ between the expression (3.32)
for small Tam and the expression (3.36). This behaviour is illustrated in figure 6 by
the results obtained numerically for Pr = 0.1 and Gr = 100. We see the rotation of
the longitudinal velocity and the temperature field with respect to their structure at
Tam = 0 (figures 2b and 2c) as Tam is increased. For Tam = 500, both fields are quite
similarly affected by the RMF with an interface which is close to vertical in the bulk.
We can guess that, at this stage, the temperature field mainly follows the deformations
of the longitudinal velocity. For Tam = 40 000, in contrast, the transport by rotation
of the temperature field is stronger, as it has still progressed, whereas the transport of
the longitudinal velocity has not much evolved, except that we are now in a
boundary layer regime with variations of the fields concentrated along the lateral
wall. At this stage, both asymptotic behaviours for the interfaces in the bulk (vertical
for the longitudinal velocity and horizontal for the temperature field) can be observed.

Finite values of the magnetic Taylor number. For finite values of both Pr and Tam,
(3.9)–(3.12) are solved numerically. In the following, we want to study the influence
of the RMF on the basic flow in the more general case of non-zero Prandtl number.

We first analyse the effect of the magnetic Taylor number on the intensity of
the basic flow. The variation of Wmax/Gr with Tam is plotted for Pr = 0.001 and
0.01 in figure 3. Note that these plots have been obtained for a given value of Gr
(Gr = 10 000), because for Pr 6= 0, Wmax/Gr still depends on Gr. We first see that for
this value of Gr, Wmax/Gr decreases as Pr is increased in the case without a magnetic
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field. The braking effect due to the RMF is also delayed as Pr is increased. This is
particularly visible for Pr = 0.01, where values of Tam larger than 1000 are necessary
to initiate the braking of the flow. The further evolutions of Wmax/Gr with Tam show
a decrease, which is steeper in the situations with larger Pr where this decrease was
delayed. The curves eventually merge with the asymptotic part of the curve obtained
at Pr = 0, which indicates an eventual braking of the flow as (1/Tam). It is thus shown
that, for large enough values of Tam, the thermal effects associated with non-zero
Prandtl numbers become negligible.

We now consider the variation of the basic flow structure with the characteristic
parameters. We study the effect of Pr for fixed values of Tam and Gr (Tam = 100,
Gr = 10 000). The structure of the flow at Pr = 0 corresponds to circular streamlines
in the cross-section (given by (3.13)), as those shown in figure 5(f ), and to the
longitudinal velocity field shown in figure 4 for Tam = 100. The increase of Pr
diminishes the influence of the RMF. Indeed, for Pr = 0.001, both a decrease of the
rotation in the cross-section and a decrease of the inclination of the longitudinal flow
are obtained, and the temperature field follows the inclination of the longitudinal
velocity field with less distortion, and for Pr = 0.01, the structure of the basic flow
looks quite similar to that obtained without a magnetic field and shown in figure
2(a,b′,c), with only symmetry properties which are not perfectly verified. In fact, an
increase (decrease) of Pr and Gr acts on the flow structures in the same way as
a decrease (increase) of Tam. This is what could be expected from the small Pr
approximation (§ 3.2.2) where the parameters appear as PrGr2/Tam (in ψ for small
T am) or PrGr/Tam (in Θ for large Tam).

3.3. Symmetries of the problem

The geometry is considered as infinite in the z-direction of the cylinder axis and the
basic flow does not depend on z. The problem is thus invariant under translations
Tz0

by length z0 along the z-axis. The group generated by the translations is the
group E(1). In the case without an RMF, the problem admits two supplementary
symmetries: a symmetry of rotation of π about any horizontal axis parallel to the
x-direction, for example the x-axis, which we denote by Rπ, and a reflection symmetry
Sl with respect to the longitudinal vertical plane (the plane along the z-axis, at x = 0,
denoted as the Vl plane). With an RMF, Rπ and Sl are no more valid, but the problem
admits another supplementary symmetry with respect to any point belonging to the
z-axis, for example the point C at the intersection with the x-axis, which we denote
as Sc. Note that Sc = Rπ ◦ Sl , so that Sc is also verified in the case without a magnetic
field. Rπ, Sl and Sc are defined, respectively, as

Rπ : (x, y, z, t)→ (x,−y,−z, t), (U, V, W, T ) → (U,−V,−W, T ), (3.37)

Sl : (x, y, z, t)→ (−x, y, z, t), (U, V, W, T )→ (U,−V, W, T ), (3.38)

Sc : (x, y, z, t)→ (−x,−y,−z, t), (U, V, W, T ) → (U, V,−W, T ). (3.39)

(Remember that U and V are the radial and azimuthal velocity components.)
The symmetries Rπ and Sc are equivalent to two and three combined reflections,
respectively. Each symmetry Rπ, Sl and Sc defines a Z2 group.

In the case without a magnetic field, the symmetry group, generated by Tz0
, Rπ and

Sl , is isomorphic to E(1)×Z2×Z2, whereas in the case with an RMF, it is generated
by Tz0

and Sc and is isomorphic to E(1)×Z2. All these symmetries may be broken at
the instability thresholds where bifurcations to new flow states will occur.
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4. Stability of the basic steady convective flow

4.1. Linear stability analysis

The stability of the basic flows described in § 3 is now investigated by a linear
analysis. These basic flows are steady and uniform in the direction of the channel
axis (z-direction). The general solution of the three-dimensional problem can then
be written as the superposition of the basic flow and normal-mode perturbations
periodic in the z-direction:

(V , P , T ) = (V 0, P0, T0) + (v, p, θ) e(ωt+ikz), (4.1)

where k is the wavenumber in the z-direction and ω = ωr + iωi is a complex growth
rate (temporal growth rate ωr and oscillation frequency ωi ). After substitution of (4.1)
into the governing system (3.3)–(3.6) and linearization with respect to the perturbation
quantities, we obtain the following system of linear equations:

ωu + U0

∂u

∂r
+

V0

r

∂u

∂α
+ ikW0u−

V0v

r
+ u

∂U0

∂r
+

v

r

∂U0

∂α
−

vV0

r

= −
∂p

∂r
+

(

∇2
s − k2

)

u−
u

r2
−

2

r2

∂v

∂α
+ Grθ sinα, (4.2)

ωv + U0

∂v

∂r
+

V0

r

∂v

∂α
+ ikW0v +

V0u

r
+ u

∂V0

∂r
+

v

r

∂V0

∂α
+

vU0

r

= −
1

r

∂p

∂α
+

(

∇2
s − k2

)

v −
v

r2
+

2

r2

∂u

∂α
+ Grθ cosα, (4.3)

ωw + U0

∂w

∂r
+

V0

r

∂w

∂α
+ ikW0w + u

∂W0

∂r
+

v

r

∂W0

∂α
= − ikp +

(

∇2
s − k2

)

w, (4.4)

ωθ + U0

∂θ

∂r
+

V0

r

∂θ

∂α
+ ikW0θ + u

∂T0

∂r
+

v

r

∂T0

∂α
+ w =

1

Pr

(

∇2
s − k2

)

θ, (4.5)

∂u

∂r
+

u

r
+

1

r

∂v

∂α
+

∂w

∂z
= 0, (4.6)

with boundary conditions

u = v = w = θ = 0 at r = 1. (4.7)

Here U0, V0, W0 and u, v, w are the velocity components (along radial, azimuthal
and longitudinal directions) of the basic flow and the perturbations, respectively. T0

is the temperature of the basic state, and θ and p are the temperature and pressure
perturbations, respectively.

Using the same discretization as for the basic state, we obtain a generalized
eigenvalue problem AX = ωBX , where A is a complex matrix, B is a real symmetric
matrix and X is the vector of the discretized perturbations. To solve this problem and
thus obtain the most critical eigenvalues and the corresponding eigenvectors (fields
of velocity, temperature and pressure perturbations), a Newton–Raphson method is
used, which is initiated by the result of a linearized time evolution (see Lyubimova
et al. 2009 and Lyubimov, Lyubimova & Morozov 2001 for details). The neutral
perturbations corresponding to a marginal Grashof number are then obtained from
the condition ωr = 0 (zero growth rate). Minimization over the wavenumber k yields
the critical values kc and Grc.

4.2. Energy analysis

In order to get some physical insight into the stability results, we performed energy
analyses. For that, by multiplying the linear stability equations by the complex
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conjugate of the velocity perturbation, v
∗, and after integration on the cross-section

S and some simplifications, an equation giving the rate of change of the fluctuating
kinetic energy can be derived. From this equation, for any instabilities at their critical
thresholds (ωr = 0), normalized kinetic energy budgets can be obtained, which we
can write as:

E′
s + E′

b = 1, (4.8)

where

E′
s =

−Re

(

3
∑

i=1

2
∑

j=1

∫

S

vj

∂V0i

∂xj

v∗i dS

)

|Ed |
(4.9)

are the productions of fluctuating kinetic energy by shear of the basic flow and

E′
b =

Re

(
∫

S

Gr θ v∗2 dS

)

|Ed |
(4.10)

is the production of fluctuating kinetic energy by buoyancy, all these terms being
normalized by the viscous dissipation of fluctuating kinetic energy,

Ed = Re

(

3
∑

i=1

3
∑

j=1

∫

S

∂2vi

∂x2
j

v∗i dS

)

. (4.11)

In these expressions, the basic flow and the velocity perturbations are expressed in
Cartesian coordinates (x, y, z or xi for i = 1 to 3) and they are denoted as V0i and vi ,
respectively (note that V03 = W0 and v3 = w). Re denotes the real part.

We will see that the two important shear terms in our situation are those related
to the basic longitudinal velocity. The first one, which is dominant without an
RMF (see Lyubimova et al. 2009), is the term related to the vertical variation of
W0, E′

sy = −Re(
∫

S
v2(∂W0/∂y)w∗dS)/|Ed |. The second one is the term related to

the transverse variation of W0, E′
sx = −Re(

∫

S
v1(∂W0/∂x)w∗dS)/|Ed |. These terms

are obtained by integration of spatial fields, E′sy = Re((−∂W0/∂y)v2w
∗)/|Ed | and

E′sx = Re((−∂W0/∂x)v1w
∗)/|Ed |, respectively. These fields can also be expressed as the

product of two terms, respectively, related to the basic flow and the fluctuating flow.
These terms are My = (−∂W0/∂y) and Fy = Re (v2w

∗)/|Ed | for E′sy , and Mx = (−∂W0/

∂x) and Fx = Re (v1w
∗) / |Ed | for E′sx . We can then write E′

sy =
∫

S
E′sy dS =

∫

S
MyFy dS

and E′
sx =

∫

S
E′sx dS =

∫

S
MxFx dS.

5. Stability results

5.1. Convective flow stability in the absence of a rotating magnetic field

The linear stability of the convective flow in the cylinder with respect to three-
dimensional perturbations is first studied without a magnetic field for a wide range
of Prandtl number values. First, note that for Pr = 0 the critical Grashof number
corresponding to the instability threshold is Grc = 5263 and the critical wavenumber
is kc = 0.34. In this case, the temperature field is frozen (no temperature perturbations)
and the instability is steady and of hydrodynamic type. The structure of the critical
perturbation is shown in figure 7.
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(a) (b) (c)

Figure 7. Isolines for the real and imaginary parts of the radial (a), azimuthal (b) and
longitudinal (c) velocity perturbations at the critical threshold (Grc = 5263, kc = 0.34) for
Pr = 0 and without magnetic field (Tam = 0). Because of the symmetry properties, only half
of the cross-section is shown.

As explained in § 3.3, the symmetry group of our problem in the absence of an
RMF is generated by Tz0

, Rπ and Sl . Each eigenmode with finite wavelength (kc 6= 0)
breaks the translation invariance and is thus associated with a bifurcation which
produces an infinite number of equivalent steady states parametrized by z0. Each
eigenmode possesses horizontal axes of symmetry (separated by half a wavelength,
λ/2 = π/k) and axes of antisymmetry at mid-length between the symmetry axes; one
of the symmetry axes can be chosen to be the x-axis (at z = 0) so as to make the
eigenmode symmetric under Rπ. If the discretized eigenvector is denoted as Xr + iXi ,
the perturbation will be given by Re(Xeikz) = Xrcos(kz) − Xi sin(kz). According to
the symmetries just mentioned, Xr , which is the perturbation in the cross-section at
z = 0, will appear symmetric with respect to the horizontal axis at y = 0, whereas
Xi , which is the perturbation in the cross-section at z = π/(2k) = λ/4, will appear
antisymmetric. In intermediate cross-sections, the perturbation will not present any
symmetry with respect to the horizontal axis at y = 0. This is illustrated in figure 7
where the real and imaginary parts of the eigenvectors for the velocities u, v and w

are given. We see that vr and wr appear as odd in y and ur as even (this expresses
the symmetry), whereas vi and wi appear as even in y and ui as odd (this expresses
the antisymmetry).

The eigenvectors plotted in figure 7 also indicate that the symmetry Sl with respect
to the vertical plane Vl at x = 0 is broken at the critical threshold (ur , ui , wr , wi

are odd in x and vr , vi are even). This result contrasts with those obtained for a
rectangular cross-section (Lyubimova et al. 2009), which showed that this left–right
symmetry was kept at the critical threshold for cavities with a transverse aspect ratio
ranging from 1 to 5. Finally, the eigenmode has points of symmetry (separated by half
a wavelength) on the z-axis and points of antisymmetry in between. As Sc = Rπ ◦ Sl

and Sl is broken, the point at z = 0 appears as a point of antisymmetry and the point
at z = λ/4 as a point of symmetry.

Without an RMF (Tam = 0), the stability curve showing the dependence of the
critical Grashof number Grc (for the more dangerous steady hydrodynamic mode)
on the Prandtl number Pr and the curve giving the corresponding variation of the
critical wavenumber kc are shown in figure 8. We see the very strong stabilization
which takes place at a rather small value of the Prandtl number, denoted in a general
way as Prt and specifically for Tam = 0 as Prt,0(Prt,0 ≈ 3× 10−4). This stabilization
effect at low Pr was already found for a horizontal cylinder of rectangular cross-
section (Lyubimova et al. 2009). It was related to the presence of a stable temperature
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Figure 8. Critical Grashof number, Grc , as a function of the Prandtl number Pr for three
values of Tam (T am = 0, 100, 1000). Solid curves indicate steady thresholds and dashed curves
oscillatory thresholds. The corresponding critical wavenumbers kc (dash-dotted curves) are
given for the dominant modes.

(a) (b) (c) (a′) (b′) (c′)

Figure 9. Isolines of the longitudinal velocity of the basic flow (a, a′), and real (b, b′) and
imaginary (c, c′) parts of the longitudinal velocity perturbation, at the critical threshold for
Pr = 0.00029 (Grc = 7415, kc = 0.33) (a–c) and Pr = 0.0003 (Grc = 60756, kc = 0.35) (a′–c′)
in a situation without magnetic field (Tam = 0). These cases are just below and above the
domain of sharp stabilization, respectively. Because of the symmetry properties, only half of
the cross-section is shown.

stratification in the region where the perturbations developed, at the interface between
the counterflows. Note that the critical curve evolves slightly backwards close to Prt,0,
which indicates the presence of a slight hysteresis in this zone. Concerning the
critical wavenumber, after a slight decrease, it also abruptly increases at Pr = Prt,0.
Beyond Prt,0, for Prt,0 < Pr < 0.01, the critical Grashof number decreases as Pr is
increased, whereas the wavenumber increases up to kc ≈ 0.63. The decrease of the
critical threshold in this domain of Pr can be well approximated by a scaling law,
Grc ∼ Pr−2/5. A further increase of the Prandtl number will result in a stabilization
effect still connected to the stable temperature stratification (Lyubimova et al. 2009).

Figure 9 shows the basic flow (isolines of the longitudinal velocity W0) and the
critical perturbation (real and imaginary parts of the w eigenvector) at Prandtl
number values close to Prt,0, below and above the sharp stabilization. Below the



Rotating magnetic field effect on convection and its stability in a cylinder 125

(a) (b) (c) (d)

Figure 10. Perturbation kinetic energy at the critical threshold in situations without magnetic
field (Tam = 0) for (a) Pr = 0 (Grc = 5263), (b) Pr = 0.00029 (Grc = 7415), (c) Pr = 0.0003
(Grc = 60 756) and (d ) Pr = 0.02 (Grc = 11644). Because of the symmetry properties, only half
of the cross-section is shown.

stabilization (Pr = 0.00029, Grc = 7415, kc = 0.33) (figure 9a–c), the basic flow and
the critical perturbation are nearly the same as those obtained at zero Prandtl number
(compare with figures 2b and 7c). Above the stabilization (Pr = 0.0003, Grc = 60756,
kc = 0.35) (figures 9a′,b′,c′), the results are quite different. For the basic flow, we see
an influence of the cross-section vortices on the longitudinal velocity W0, similarly to
what was shown in figure 2(b′), and for the perturbation, we see that the different
peaks of the w perturbation have split into two, the strongest peaks being close to
the lateral boundary. This change can also be clearly identified on the perturbation
kinetic energy plotted for Pr = 0, 0.00029, 0.0003 and 0.02 in figure 10. (Note that
the kinetic energy is defined by 0.5(v · v

∗) = 0.5(v2
r + v

2
i ), so that it is positive and

appears in the cross-section as symmetric with respect to both horizontal and vertical
middle axis. The breaking of the Sl symmetry, however, indicates that only the velocity
perturbation along the x-direction is non-zero in the Vl plane.) For Pr = 0.00029, we
have two strong peaks of kinetic energy on both sides of the Vl plane, each being
centred in one half of the cylinder (this is very similar to what is obtained at Pr = 0),
whereas for Pr = 0.0003, each peak has given two peaks, the main peak being close
to the boundary. The kinetic energy is then not much changed for larger Pr values,
as it can be seen from the plot at Pr = 0.02. All this indicates a change in the
instability mode at Prt,0. This looks quite similar to what was observed in the case
of a horizontal cylinder of rectangular cross-section (Lyubimova et al. 2009), where
a new sidewall mode was identified beyond the stabilization at Prt,0. Note that for
Pr < Prt,0, only one peak of kinetic energy, centred in the cross-section, was found for
a rectangular cross-section, whereas we have two peaks for a circular cylinder: this is
due to the fact that the Sl symmetry is broken in the second case and preserved in
the former case. Finally note that, as illustrated in figure 9, the symmetry properties
described for Pr = 0 remain the same on the whole range of Pr values, even in the
domain beyond the transition at Prt,0.

In order to better characterize the changes which occur when the Prandtl number
is increased, an energy analysis was performed for different values of Pr (Pr = 0,
0.00029, 0.0003 and 0.02). The perturbation kinetic energy budget corresponding
to (4.8) is shown in table 1. For the four values of Pr, we see that the buoyancy
contribution is really negligible and that the destabilization comes from the shear of
the basic flow and is related to the terms E′

sx and E′
sy (connected to the gradients
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Pr = 0 Pr = 0.00029 Pr = 0.0003 Pr = 0.02
Grc = 5263 Grc = 7415 Grc = 60756 Grc = 11 644

Tam = 0 kc = 0.34 kc = 0.33 kc = 0.35 kc = 0.77

E′
b 0 −2× 10−4 −8× 10−5 −3.9× 10−3

E′
s 1 ≈1 ≈1 ≈1

E′
sx 0.157 0.134 0.263 0.506

E′
sy 0.843 0.865 0.735 0.470

Table 1. Kinetic energy budgets associated with the hydrodynamic modes at threshold for
different values of the Prandtl number in the case without RMF (T am = 0). For Pr = 0, E′

sx

and E′
sy are the only shear contributions. For Pr = 0.00029 and 0.0003 (below and above the

transition at Prt,0, respectively) and Pr = 0.02, the other contributions exist but are small. (The
largest is connected to (∂U0/∂x) and its values are 5.9× 10−4, 1.15× 10−3 and 2.18× 10−2,
respectively.)

(a)

(a′) (b′) (c′)

(b) (c)

Figure 11. Isolines of the shear energy field E′s (a, a′) and of its main contributions E′sx (b,b′)
and E′sy (c,c′) at the critical threshold for Pr = 0.00029 (Grc = 7415) (a–c) and Pr = 0.0003

(Grc = 60 756) (a′–c′) in a situation without magnetic field (Tam = 0).

of the longitudinal velocity W0) which dominate the other shear terms. As in the
case of the rectangular cross-section (Lyubimova et al. 2009), the main shear term
is generally E′

sy (connected to the vertical gradient of the longitudinal velocity,
∂W0/∂y), but E′

sx is not negligible in our case and even becomes slightly dominant for
Pr = 0.02.

The analysis of the shear terms is presented in figures 11 and 12 for both Pr =
0.00029 and 0.0003. (Pr = 0.00029 is representative of the cases before the transition
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(a) (b) (c) (d)

(a′) (b′) (c′) (d′)

Figure 12. Isolines of the velocity disturbance products Fx (a, a′) and Fy (b, b′) and of the
basic flow shears Mx (c, c′) and My (d, d ′) (which are such that E′sx = MxFx and E′sy = MyFy)
at the critical threshold for Pr = 0.00029 (Grc = 7415) (a–d ) and Pr = 0.0003 (Grc = 60 756)
(a′–d ′) in a situation without magnetic field (Tam = 0).

at Prt,0 (as Pr = 0), and Pr = 0.0003 is representative of the cases beyond Prt,0.) We
first give the plots of the global shear energy field E′s and its main contributions E′sx
and E′sy in figure 11. We then show the terms which build these shear contributions,
Mx and Fx for E′sx and My and Fy for E′sy , in figure 12. In figure 11(a–c), we see
that for Pr = 0.00029 the global shear energy field E′s presents two wide peaks
which develop along the y-axis, i.e. at the border between the counterflows. These
peaks mainly reflect the influence of E′sy , slightly reinforced by E′sx . As shown in
figure 12(a–d ), E′sy is generated by the two positive peaks of the velocity disturbance
product Fy which appear in a large zone of positive values of the basic flow shear
My . For E′sx , the four peaks, with different signs, of Fx are generated in zones of Mx

with the same sign. For Pr = 0.0003, in contrast, E′s has six peaks (figure 11a′–c′).
The two main peaks are still along the y-axis, but they are narrower than for
Pr = 0.00029 and located closer to the boundaries. These peaks reflect the influence
of E′sy . The four smaller peaks are closer to the centre and on both sides of the
y-axis, and they reflect the influence of E′sx . As shown in figure 12(a′–d ′), E′sy is
generated by the growth of two positive peaks, closer to the boundaries, in the
velocity disturbance product Fy . These peaks appear in two zones where we now
have extrema of the basic flow shear My , in connection with the modification of the
longitudinal flow observed in figure 9(a′). The four main peaks of E′sx are also different
from those obtained for Pr = 0.00029, as both the velocity disturbance product Fx

and the basic flow shear Mx (in the central zone where the peaks appear) have
changed.

All this confirms that the instabilities are due to the shear which develops at the
boundary between the counterflows. For Pr < Prt,0, the instability rather grows near
the centre where the shear is dominant, but we have two separated peaks because
of the Sl symmetry breaking. For Pr > Prt,0, the instability develops closer to the
sidewalls in the region where the shear becomes dominant because of the influence of
the counter-rotating vortices on the longitudinal basic flow. The strong stabilization
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Figure 13. Critical Grashof number Grc (solid line) and wavenumber kc (dashed line) as a
function of the magnetic Taylor number Tam for the more dangerous hydrodynamic mode at
Pr = 0.

at Prt,0 then corresponds to the transition between the usual shear instability of
counterflows and a new sidewall shear instability.

5.2. The effect of an RMF on convective flow stability: zero Prandtl number case

When the RMF is applied, the basic flow at zero Prandtl number is given by (3.13)
and (3.15). We thus have

U0(r, α) = 1
8
Tam(1− r2)reα, (5.1)

W0(r, α) = Gr(Wr (r) sin α +Wi(r) cosα), (5.2)

where W(r) = Wr (r) + iWi(r) is the solution of (3.16) with boundary condition
(3.17). The basic solution corresponds to circular streamlines in the cross-section and
to the longitudinal velocity shown in figure 4.

As explained in § 3.3, the symmetry group of the general problem with an RMF is
generated by Tz0

and Sc. Here also, each eigenmode with finite wavelength (kc 6= 0)
breaks the translation invariance and is thus associated with a bifurcation which
produces an infinite number of equivalent steady states parametrized by z0. Each
eigenmode possesses points of symmetry (separated by half a wavelength) on the
z-axis and points of antisymmetry in between. By continuity with the case without an
RMF, the point at z = 0 will be a point of antisymmetry and the point at z = λ/4 will
be a point of symmetry. According to these symmetries, Xr , which is the perturbation
in the cross-section at z = 0, will appear antisymmetric with respect to the central
point of the cross-section (at x = 0 and y = 0), whereas Xi , which is the perturbation
in the cross-section at z = λ/4, will appear symmetric. In intermediate cross-sections,
the perturbation will not present any symmetry with respect to the central point.
We have checked these symmetry properties of the critical eigenvectors, which are
also valid for non-zero Pr. The perturbations (calculated for example at the critical
threshold for Tam = 100 (Grc = 58357, kc ≈ 0.21)) appear as the evolution under
the RMF effect of those obtained at Tam = 0, except that the w perturbations have
greatly evolved.

The stability curve showing the dependence of the critical Grashof number Grc

(for the more dangerous steady hydrodynamic mode) on the magnetic Taylor number
Tam for Pr = 0 and the curve giving the corresponding variation of the critical
wavenumber kc are shown in figure 13. We see a steep monotonic growth of Grc with
Tam which demonstrates the very strong stabilization induced by the RMF at Pr = 0.
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Tam = 0 Tam = 50 Tam = 80 Tam = 110
Grc = 5263 Grc = 8291 Grc = 18 966 Grc = 246 867

Pr = 0 kc = 0.34 kc = 0.3 kc = 0.29 kc = 0.14

E′
b 0 0 0 0

E′
s 1 ≈1 ≈1 ≈1

E′
sx 0.157 0.788 1.831 2.611

E′
sy 0.843 0.212 −0.831 −1.611

Table 2. Kinetic energy budgets associated with the hydrodynamic modes at threshold for
different values of the magnetic Taylor number at zero Prandtl number. For Tam = 0, E′

sx

and E′
sy are the only shear contributions. For the other values of Tam, the other contributions

exist but are very small (smaller than 10−3).

(a) (b) (c) (d)

Figure 14. Perturbation kinetic energy at the critical threshold for Pr = 0 and different values
of the magnetic Taylor number Tam: (a) Tam = 0 (Grc = 5263), (b) Tam = 50 (Grc = 8291),
(c) Tam = 80 (Grc = 18 966) and (d ) Tam = 110 (Grc = 246 867).

This growth of Grc can be quite well fitted by an exponential law: Grc/Grc(Tam =
0) ∝ exp(1.5× 10−5Ta2.6

m ). The critical wavenumber kc globally decreases as Tam is
increased. This evolution is, however, non-monotonous: a slight initial increase is
found near Tam = 0 and another increase in the range 60 6 Tam 6 70.

The change with Tam of the perturbation kinetic energy at the critical threshold
for Pr = 0 is depicted in figure 14. The four chosen values of Tam (Tam = 0, 50,
80, 110) correspond to increasing values of the critical Grashof number (Grc = 5263,
8291, 18 966 and 246 867, respectively). (Note that for Tam 6= 0, the kinetic energy
appears as symmetric with respect to the central point of the cross-section only.) We
see that, with the increase of Tam, the two peaks obtained at Tam = 0 begin to tilt in
the direction of rotation of the magnetic field. There is also an increase of the kinetic
energy at the centre of the cross-section which eventually gives a central peak. At
Tam = 80, this central peak already dominates the two other peaks which are shifted
closer to the boundaries. Finally, at Tam = 110, the dominant central peak is isolated
from the two other peaks whose contribution to the kinetic energy will decrease as
Tam is further increased. Other calculations performed at fixed values of Gr and k

(Gr = 5000, k = 0.3) for increasing values of Tam have shown a similar increase
of a central peak which eventually dominates the kinetic energy of the dominant
eigenmode. This confirms that the growth of a central peak in the kinetic energy is
really connected to the influence of the RMF.

In order to better characterize the changes which occur when Tam is increased at
Pr = 0, energy analyses were performed. The perturbation kinetic energy budgets for
the same cases as in figure 14 are shown in table 2. There is no buoyancy contribution
in these cases, and the destabilization still comes from the shear energy terms E′

sx
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(a) (b) (c)

Figure 15. Isolines of the shear energy field E′s (a) and of its main contributions E′sx (b)
and E′sy (c) at the critical threshold (Grc = 18 966) for Tam = 80 and Pr = 0.

(a) (b) (c) (d)

Figure 16. Isolines of the velocity disturbance products Fx (a) and Fy (b) and of the basic
flow shears Mx (c) and My (d ) (which are such that E′sx = MxFx and E′sy = MyFy) at the
critical threshold (Grc = 18 966) for Tam = 80 and Pr = 0.

and E′
sy . Strong changes, however, affect the respective contributions of these two

terms when Tam is increased. E′
sy which is the dominant destabilizing term at Tam = 0

decreases as Tam is increased, and even quickly becomes negative, giving a stabilizing
contribution. E′

sx , in contrast, gives a destabilizing contribution which increases with
Tam and becomes quickly dominant.

The analysis of the shear terms is presented in figures 15 and 16 for Tam = 80. The
global shear energy field E′s in figure 15 looks similar to the corresponding kinetic
energy field (figure 14c) with three non-disjoined peaks, along a diameter slightly
inclined with respect to the horizontal. The two weaker non-central peaks reflect the
influence of the two positive peaks of E′sy and they correspond to the evolution of
the two peaks found at Tam = 0. A negative peak has, however, appeared in E′sy
near the centre, but this peak is dominated by the positive central peak of E′sx . As
shown in figure 16, the positive peak of E′sx is generated by a large negative peak
in the velocity disturbance product Fx , around the centre, in a zone where the basic
flow shear Mx is now negative. The peaks of E′sy are generated by similar peaks in
the velocity disturbance product Fy (a central negative peak and two positive peaks
closer to the boundaries) in a large zone where the basic flow shear My is positive.

The positive peak which appears in the perturbation kinetic energy when Tam is
increased is then principally connected to the modifications which affect the shear
energy E′sx under the influence of the RMF: transverse gradients of the longitudinal
velocity appear around the centre of the cavity, which generate velocity perturbations
in this zone, thus leading to a destabilizing shear contribution. The modifications of
E′sy also play a role: the appearance of negative values in the velocity disturbance
product Fy , near the centre, will moderate the destabilizing influence of E′sx , and will
lead to the shift of the destabilizing peaks of E′sy closer to the boundaries.
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5.3. The effect of an RMF on convective flow stability:
non-zero Prandtl numbers

We now investigate the effect of the RMF on the convective flow stability for non-zero
Pr values. For that, the dependence of the critical Grashof number on the Prandtl
number is calculated for two values of the magnetic Taylor number, Tam = 100
and Tam = 1000. Figure 8 depicts these stability curves and the corresponding
wavenumbers, together with those obtained for Tam = 0. For Tam = 0 and 100, only
the steady thresholds, which correspond to the more dangerous perturbations, are
given. For Tam = 1000, both steady and oscillatory thresholds are given. First note
that the thresholds increase with the increase of Tam, but that this increase strongly
depends on the value of Pr. The sharp increase of the thresholds found for Tam = 0
at Prt,0 and corresponding to a transition between two different hydrodynamic modes
is still present for Tam = 100. It occurs, however, at a smaller value of Prt , and the
amplitude of the increase is reduced. In the range of Pr below the transition at Prt ,
the stability curve for Tam = 100 shows a decrease of the thresholds as Pr is increased.
For example, we have Grc = 58 357 for Pr = 0 and Grc = 20 113 for Pr = 0.00018,
which indicates a clear decrease of the stabilizing effect of the magnetic field as Pr
is increased in this Pr range. For Pr values above the transition, the stability curve
for Tam = 100 almost follows the critical curve obtained for Tam = 0 for the sidewall
modes, which indicates that the RMF has only a very weak stabilizing effect on these
sidewall modes. For larger values of Tam, the value of Prt will still decrease, leading
to the extension towards smaller Pr values of the critical curve related to the sidewall
modes. Finally, for Tam = 1000, the transition at Prt is no more visible in the Pr
range studied (10−5 6 Pr 6 0.01), and only the critical curve portion related to the
sidewall modes is visible. In fact, for Tam = 1000, the steady modes are no more, the
more dangerous modes and an oscillatory critical curve slightly precedes the steady
curve. Concerning the critical wavenumbers, for Tam = 100 they increase with Pr,
but are still influenced by the strong increase of the thresholds around Prt and then
almost follow the wavenumber curve obtained for Tam = 0 in the domain of the
sidewall instability. For Tam = 1000, the critical wavenumber curve increases more
regularly in the whole Pr range studied.

We now analyse the basic flow and the critical perturbations obtained in the
presence of an RMF (Tam = 100) for two Prandtl number values close to Prt , below
and above the transition. Below the transition (Pr = 0.00018, Grc = 20 113, kc = 0.32),
the basic flow (figure 17a–c) looks similar to that obtained for Pr = 0. The inclination
of the longitudinal velocity is slightly weaker than for Pr = 0 (compare with figure 4
for Tam = 100). The streamlines of the transverse flow are also not completely circular
as they were for Pr = 0. These streamlines can be quite well predicted by the analytical
expression (3.33) derived in the limit case of small values of Tam and Pr (the case at
Pr = 0.00018 corresponds to a ≈ 16 and can be compared with the results for a = 5
and a = 100 presented in figure 5). Finally the temperature field in the cross-section
is quite similar to the longitudinal flow field, with a similar inclination due to the
RMF. The critical perturbations for Pr = 0.00018 can still be seen as the rotation of
those obtained without a magnetic field for Pr < Prt,0 (figure 7). They are also close
to those obtained for Pr = 0 at Tam = 100, but with a slightly different orientation
of the patterns connected to the modification of the basic flow. The largest changes
affect the patterns for the w perturbation.

Above the transition (Pr = 0.00019, Grc = 73664, kc = 0.33), the basic flow
(figure 17a′–c′) seems to be unaffected by the RMF. Except for the Sl symmetry
which is no more valid, the flow structure is really similar to that obtained at Tam = 0
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(a) (b) (c)

(a′) (b′) (c′)

Figure 17. Streamlines of the transverse flow (a,a′), isolines of the longitudinal velocity (b,b′)
and isolines of the temperature field (c,c′) for the basic solution at threshold for Tam = 100 in
two cases just below and above the domain of sharp stabilization: Pr = 0.00018 (Grc = 20 113)
(a–c) and Pr = 0.00019 (Grc = 73 664) (a′–c′).

(a) (b) (c)

Figure 18. Perturbation kinetic energy at the critical threshold in situations with RMF
(Tam = 100) for (a) Pr = 0 (Grc = 58 357), (b) Pr = 0.00018 (Grc = 20113) and (c)
Pr = 0.00019 (Grc = 73 664).

for Pr > Prt,0 (compare with figure 2b′), with a strong influence of the cross-section
vortices on the longitudinal flow. The structure of the critical perturbations for
Pr = 0.00019, despite different symmetry properties, is also close to the structure
obtained for Pr > Prt,0 in the absence of a magnetic field (figure 9b′,c′), which still
confirms that for Pr > Prt the effect of the RMF at Tam = 100 is nearly negligible.

The perturbation kinetic energy plotted for different values of Pr at Tam = 100
in figure 18 illustrates how the modifications induced by the RMF evolve with Pr.
Below the transition (figure 18a,b), we find three peaks aligned along a diameter
which is inclined with respect to the horizontal, as already mentioned for Pr = 0 and
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non-zero Tam in § 5.2. The increase of Pr in this Pr range decreases the inclination of
the peak structure. It also decreases the intensity of the central peak (connected to
the RMF) with respect to the two other peaks (already existing at Tam = 0). Above
the transition (figure 18c), we find four peaks which are really similar to those
obtained at Tam = 0 (figure 10c), except that they are less symmetrical.

We finally present the energy analysis results in cases with an RMF (Tam = 100)
for different values of Pr (Pr = 0, 0.00018 and 0.00019). The perturbation kinetic
energy budget is first shown in table 3. As for Tam = 0, the buoyancy contribution
is really negligible, and the destabilization comes from the shear of the basic flow,
with two main terms, E′

sx and E′
sy . If the energy budget for Pr = 0.00019 (just above

the transition at Prt ) is similar to what was found for Tam = 0 just above Prt,0, with
a main destabilizing shear contribution coming from E′

sy and a smaller one coming
from E′

sx , changes appear for the two other values of Pr. For these two cases, as
already observed in § 5.2 for Pr = 0 and non-zero Tam, the dominant destabilizing
shear term is E′

sx and E′
sy appears as stabilizing. Note that these terms become smaller

(in absolute value) when Pr is increased. The analysis of the shear terms shows that
for Pr = 0.00018, the structure of the global shear energy field E′s , with three peaks
connected to different peaks of E′sx and E′sy , is really similar to what is shown for
Pr = 0 and Tam = 80 in figure 15, and a similar analysis of the shear terms influenced
by the RMF can be conducted. For Pr = 0.00019, the global shear energy E′s is close
to what was found for Pr = 0.00029 at Tam = 0 (figure 11a′) and the contributions
E′sx and E′sy are as well, although some dissymmetries appear. The influence of the
RMF, which corresponds to modifications of the shear energy field with the growth
of a central peak, is then really effective only for very small values of the Prandtl
number, below the transition at Prt .

6. Conclusion

The effect of an RMF on the steady convective flow driven by a longitudinal
temperature gradient in a horizontal channel of circular cross-section and on the
stability of this flow has been studied.

Both theoretical and numerical approaches have been used to calculate the
convective flows. In the case without an RMF (where the problem depends on
the Grashof and Prandtl numbers), the fluid moves in the direction of the imposed
temperature gradient in the lower part of the channel and in the opposite direction
in the upper part. At non-zero Prandtl number, temperature gradients appear in the
circular cross-section between the conducting boundaries and the central region of
the channel. These temperature gradients are the result of the heat transported by the
convective flow in the upper part and of the cooling induced by the flow in the lower
part. They generate four vortices in the cross-section, which, for large enough values
of the Prandtl and Grashof numbers, will lead to modifications of the longitudinal
convective flow, as already observed in channels with rectangular cross-sections.

The effect of the RMF (parametrized by the magnetic Taylor number Tam and
expressed by a purely azimuthal force proportional to the radial coordinate) is to
induce a rotating motion of the fluid around the cylinder axis.

(i) For zero Prandtl number, a case where an analytical solution is derived, the flow
in the circular cross-section corresponds to circular streamlines, and the longitudinal
velocity structure is moved in the direction of the magnetic field rotation. The interface
between the counterflows evolves from its horizontal position for Tam = 0 to a vertical
orientation in the limit case of large Tam values. The intensity of the longitudinal
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flow, proportional to Gr, decreases as Tam is increased and an asymptotic variation
as 1/Tam (valid for Tam > 200) is obtained at large Tam.

(ii) For non-zero Prandtl numbers but in the small Pr approximation (the
temperature is not transported by the rotating flow), different limit cases are analysed.
For small Tam, the longitudinal velocity and the temperature field are not modified
by the RMF, but the flow in the cross-section evolves from the four vortices
structure to the circular streamlines according to the variations of the parameter
a = (11520 Tam)/(Pr Gr2). For large Tam, a case where the longitudinal velocity field
W is transported by the rotation, the temperature field follows the transformations
of W and, as a consequence, the interface between hot and cold fluids also becomes
vertical in the bulk in the asymptotic limit of large Tam.

(iii) For finite Prandtl numbers, depending on the respective values of Pr, Gr, and
Tam, a great variety of flow structures can be obtained. These flow structures look
like those revealed by the zero and small Pr approximations. They range from the
structures with circular streamlines and transport by rotation of both longitudinal
velocity and temperature field to the structures almost insensitive to rotation, with
four cross-section vortices. As expected, it is found that the structures with circular
streamlines are favoured by an increase of Tam or a decrease of Pr and Gr. For non-
zero Pr, the intensity of the longitudinal flow W also decreases as Tam is increased,
but this decrease occurs later as Pr is increased and evolves more quickly. The curves
W (Tam) eventually reach the asymptotic variation in 1/Tam found for Pr = 0. Finally,
in the limit of large Tam, it can be shown that the temperature field will be much
affected by rotation and the interface between hot and cold fluids in the bulk will be
horizontal, as the result of a π rotation.

These convective flows in infinite cylindrical channels are invariant by translation
Tz0

along the cylinder axis. In the case without a magnetic field, they have two
additional symmetries, a reflection Sl with respect to the longitudinal vertical plane Vl

and a π rotation Rπ about horizontal transverse axes as the y-axis (the combination
of these two symmetries gives a symmetry Sc with respect to points on the cylinder
axis, as the point C). In the case with an RMF, the convective flows have only one
additional symmetry, the symmetry Sc.

The linear stability analysis of these convective flows was first performed without
a magnetic field in a range of small Pr values (10−5 6 Pr 6 0.02), and then with
an RMF, at Pr = 0 for varying Tam and at fixed Tam values for varying Pr. The
results without a magnetic field show that in this Pr range the more dangerous modes
are steady hydrodynamic modes. As Pr is increased, there is a steep increase of the
thresholds at a given value Prt,0 of the Prandtl number. This corresponds to the
stabilization (by a stable temperature stratification) of the usual shear mode related
to the development of perturbations at the counter-stream boundary, and to the
transition to a new shear mode, denoted as sidewall mode. This new mode develops
closer to the sidewalls because the four cross-section rolls lead to an increase of the
shear in these zones compared to the central part of the channel. The thresholds
for this sidewall mode follow a characteristic law of decrease, Grc ∼ Pr−2/5, for
Prt,0 < Pr < 0.02. These stability results for Tam = 0 look similar to those obtained
in the case of channels with a rectangular cross-section (transverse aspect ratio
ranging from 1 to 5). The value of Prt is, however, still smaller in the cylindrical
channel and the critical perturbations have broken the left–right Sl symmetry. For
the hydrodynamic instability at very small Pr, the shear (mainly connected to the
vertical shear −∂W0/∂y) appears near the centre but, due to the symmetry breaking,
the perturbation kinetic energy appears with two peaks, one on each side of the Vl
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Pr = 0 Pr = 0.00018 Pr = 0.00019
Grc = 58 357 Grc = 20 113 Grc = 73 664

Tam = 100 kc = 0.21 kc = 0.32 kc = 0.33

E′
b 0 −4× 10−5 −6× 10−5

E′
s 1 ≈1 ≈1

E′
sx 2.457 1.259 0.310

E′
sy −1.457 −0.260 0.688

Table 3. Kinetic energy budgets associated with the hydrodynamic modes at threshold for
different values of the Prandtl number in the case with RMF (T am = 100). Pr = 0.00018
and 0.00019 are chosen below and above the transition at Prt , respectively. Only the main
shear contributions E′

sx and E′
sy are given. The other contributions exist but are small. (For

Pr = 0 and 0.00018, the largest one is connected to (∂U0/∂y) and its values are 4.0× 10−4

and 1.16× 10−3, respectively. For Pr = 0.00019, it is connected to (∂U0/∂x) and its value is
8.2× 10−4.)

plane. For the sidewall instability, two new peaks closer to the boundaries become
dominant.

A very strong stabilization of the convective flows by the RMF is found for Pr = 0.
The increase of the threshold can be fitted by an exponential law: Grc/Grc(Tam =
0) ∝ exp(1.5× 10−5Ta2.6

m ). At the threshold, for Pr = 0, the RMF leads to the
appearance at the centre of the channel of a new peak of perturbation kinetic energy
connected now to the horizontal shear −∂W0/∂x, and the two peaks connected to
−∂W0/∂y are shifted closer to the boundaries and decrease in intensity. A similar
type of stabilization, but less efficient, is obtained for small non-zero Prandtl numbers,
until the transition Prandtl number Prt is reached. In fact, Prt is found to decrease
when Tam is increased, but above Prt , in spite of the RMF, a sidewall instability very
similar to that described for Tam = 0 is obtained. In the Pr range corresponding to
this sidewall instability at Tam = 0, the stabilization by the RMF is weak, almost
negligible for Tam about a few hundred. This is due to the fact that in this Pr range,
the thresholds Grc are high at Tam = 0, so that the basic flow at these values of Gr
and Pr has very little sensitivity to the influence of Tam.

The stabilization of the convective flows in a cylindrical channel by an RMF is then
efficient for small values of Pr below Prt,0, i.e. Pr / 3× 10−4, and particularly for very
small values of Pr or for values of Pr close below Prt,0. For values of Pr above Prt,0,
the instability thresholds (which correspond to the sidewall instability) are, without
a magnetic field, stronger than those obtained for very small Pr (particularly for Pr
values close above Prt,0), but the use of an RMF will not afford much stabilization
in these cases, even for rather strong values of Tam.
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