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BRUHAT-TITS THEORY FROM BERKOVICH 'S POINT OF VIEW.
Il. SATAKE COMPACTIFICATIONS OF BUILDINGS

BERTRAND REMY, AMAURY THUILLIER AND ANNETTE WERNER

July 2009

Abstract: In the papeBruhat-Tits theory from Berkovich’s point of view. | — Reations and compactifi-
cations of buildingswe investigated various realizations of the Bruhat-Tit8ding %(G, k) of a connected
and reductive linear algebraic group G over a non-Archiraedeldk in the framework of V. Berkovich’s
non-Archimedean analytic geometry. We studied in detal cbmpactifications of the building which nat-
urally arise from this point of view. In the present paper, gi®e a representation theoretic flavor to these
compactifications, following Satake’s original constians for Riemannian symmetric spaces.

We first prove that Berkovich compactifications of a buildamincide with the compactifications, previously
introduced by the third named author and obtained by a glpiogedure. Then we show how to recover them
from an absolutely irreducible linear representation ofyGmbeddingZ(G, k) in the building of the general
linear group of the representation space, compactified intatde way. Existence of such an embedding is
a special case of Landvogt's general results on functoriafi buildings, but we also give another natural
construction of an equivariant embedding, which reliessiesly on Berkovich geometry.

Keywords: algebraic group, local field, Berkovich geometry, Bruhés Building, compactification.
AMS classification (2000):20E42, 51E24, 14115, 14G22.
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INTRODUCTION

1. Letk be field a endowed with a complete non-Archimedean absoblte ywhich we assume to
be non-trivial. Let G be a connected reductive linear algiebgroup ovek. Under some assumptions
on G or onk, the Bruhat-Tits buildingZ(G,K) of G(K) exists for any non-Archimedean field K
extendingk and behaves functorially with respect to K; this is for extenpe case if G is quasi-
split, or if k is discretely valued with a perfect residue field (in pattacuif k is a local field); we
refer to RTWO09, 1.3.4] for a discussion. Starting from this functorial stgince of the Bruhat-Tits
building of G over any non-Archimedean extensiork@hd elaborating on some results of Berkovich
[Ber9q, Chapter 5], we explained iflRTWO09] how to realize canonically the building?(G,k) of
G(k) in some suitabl&-analytic spaces. The fundamental construction gives arseal map from
the building to the analytification @ of the algebraic group G, from which one easily deduce amothe
map from 2(G,k) to X3, where X stands for any generalized flag variety of G, i.e.pmnected
component of the projectivie-scheme P&G) parametrizing the parabolic subgroups of G. Recall
that, if such a connected component X contaiksational point Rz PaiG)(k), then X is isomorphic
to the quotient scheme /8. In more elementary words, this simply means t#46, k) has a natural
description in terms of multiplicative seminorms (of hoimetly classes of multiplicative seminorms,
respectively) on the coordinate ring of G (on the homogesemordinate ring of any connected
component of P&6G), respectively).

Since the algebraic scheme F&y) is projective, the topological space underlying the aiifadyt
cation PanG)2" of any connected component R&) of PafG) is compact (that is, Hausdorff and
quasi-compact), hence can be used to compatif, k) by passing to the closure (in a suitable sense
if k is not locally compact). In this way, one associates wittheaannected component P@s) of
Pa(G) a compactified building; (G, k), which is a Gk)-topological space containing some factor
of #(G,k) as a dense open subset. There is no loss of generality iictiestrto connected com-
ponents of P4G) having ak-rational point, i.e., which are isomorphic to/B for some parabolic
subgroup P of G (well-defined up to(K§-conjugacy). Strictly speakingZ:(G,k) is a compactifi-
cation of (G, k) only if k is a local field and if the conjugacy class of parabolic subgsocorre-
sponding to the component @) of ParG) is non-degeneratd.e., consists of parabolic subgroups
which do not contain a full almost simple factor of G; howewee still refer to this enlargement of
2% (G, k) as a "compactification” even if these conditions are notlfatfi The compactified building
%,(G,k) comes with a canonical stratification into locally closetispaces indexed by a certain set
of parabolic subgroups of G. The stratum attached to a pbecatubgroup P is isomorphic to the
building of the semi-simplification Rad(P) of P, or rather to some factors of it. We obtain in this
way one compactified building for each(k3-conjugacy class of parabolic subgroups of G.

2. Assuming thak is a local field, the third named author had already definedhgpeatification
of B(G, k) for each conjugacy class of parabolic subgroup of G, @é&()7]. Inspired by Satake’s
approach for Riemannian symmetric spaces, the construatigloc.cit] starts with an absolutely
irreducible (faithful) linear representatignof G and consists of two steps:

(i) the apartment AS k) of a maximal split torus S of G in8(G,k) is compactified, say into
A(S,k)p, by using the same combinatorial analysis of the weighys & in Sat6(];

(i) the compactified building(G, k), is defined as the quotient of(& x A(S,k), by a suitable
extension of the equivalence relation used by Bruhat arskditonstruct’ (G, k) as a quotient
of G(k) x A(S,k).

It is proved in [loc.cit] that the so-obtained compactifiadithng only depends on the position
of a highest weight op with respect to Weyl chambers, or equivalently on the coajyoclass of
parabolic subgroups of G stabilizing the line spanned byctoveof highest weight. As suggested in
[loc.cit], these compactifications turn out to coincidehwiderkovich ones.



Let us define theype {p) of an absolutely irreducible linear representatjon G — GLy as
follows. If G is split, then each Borel subgroup B of G statsb a unique line g.in V, its highest
weight line One easily shows that there exists a largest parabolicraupd of G stabilizing the
line Lg. Now, the typet(p) of the representatiop is characterized by the following condition: for
any finite extensio’ /k splitting G, the connected component P3(G) of PafG) contains eack’-
point occurring as the largest parabolic subgroup ef® stabilizing a highest weight line in &K'
Finally, thecotypeof the representatiop is defined as the type of the contragredient representation
P. We establish in Section 2, Theor¢m]|2.1, the following corspa.

Theorem 1— Let p be an absolutely irreducible (faithful) linear represetita of G in some finite-
dimensional vector space over k. Then the compactificatiéf@, k) , and % (G, k) of the building
2% (G, k) are canonically isomorphic.

3. We still assume thdt is a local field but the results below hold more generally fdiszretely
valued non-Archimedean field with perfect residue field. #heo way to compactify buildings by
means of linear representations consists first in compaugifthe building of the projective linear
group PGly of the representation space and then using a represenitwder to embed?(G, k)
into this compactified building. Finally, a compactificatiof Z(PGLy,k) can be obtained by em-
bedding this building in some projective space, hence tiespoint is the closest one in spirit to the
original approach for symmetric spaces. It is also a way tmeot Bruhat-Tits theory to Berkovich’s
interpretation of the space of seminorms on a gikerctor space§er9y|.

More precisely, leto : G — GLy be an absolutely irreducible linear representation of G in a
finite-dimensionak-vector space V. We use such a majn two ways to obtain continuous (&)-
equivariant maps from the building?(G, k) to a compact spac&’(V,k) naturally attached to the
k-vector space V. Denoting by’ (V,k) the "extended Goldman-lwahori space” consisting of non-
zero seminorms on V (the space of norms was studie¢Gigd]), then the space?’(V,k) is the
quotient of.(V,k) by homotheties. It is the non-Archimedean analogue of tlwiept of the cone
of positive (possibly degenerate) Hermitian matrices ephojective space associated with Evigl
[Satoy.

In the real case, the latter space is classically the tapmtesof a suitable Satake map. In our
case, we identify2"(V,k) with the compactification’5(PGLy,k) corresponding to the typ& of
parabolic subgroups stabilizinghgperplaneof V. One could also consider the compactified building
Pr(PGLy, k) associated with the typeof parabolic subgroups stabilizindiae of V (see Wer01])).
Note that%s(PGLy,K) = Z(PGLyv,k), where V' is the dual of V.

A first way to obtain a map?(G,k) — 2" (V,K) is to make use of E. Landvogt’s work on the func-
toriality of Bruhat-Tits buildings (with respect both tcetlgroup and to the field). Indeed, specializing
the results of[[an0q] to k-homomorphisms arising from linear representatipnss — GLy, we ob-
tain a (possibly non-uniquely defined) map: %2(G,k) — 2 (PGLy, k) between buildings. We can
then compose it with the compactification mdgp: % (PGLy,k) — %(PGLy,k) in order to obtain
an analogue of a Satake map.

There is another way to embed the buildi#jG, k) into 2" (V, k), which turns out to be very natu-
ral and relies crucially on Berkovich geometry. There ex@éshaturak-morphismp from the scheme
Bor(G) of Borel subgroups of G to the projective sp&®/) satisfying the following condition: for
any extension Kk, the mappx sends a Borel subgroup B of &K to the unique K-poinfp(B) of
P(V) it fixes. By passing to analytic spaces, we get a mapor(G)3"— P(V)a". Using the concrete
description of2"(V,k) andP(V)2", we have a natural retractian: P(V)2"— 27(V,k), so that the
compositionp = T o p o 3, sends the Bruhat-Tits building (G, k) into 2°(V,k). This is our second
way to obtain a non-Archimedean analogue of a Satake magt Enelasily seen that this canonical
map sends an apartment into an apartment.



These two embedding procedures lead to the previous fanoifieompactifications (cf. Theorem

f.8 and Theorerp §.3):

Theorem 2— Assume that k is a non-Archimedean local field angpleG — GLy be an absolutely
irreducible linear representation @ in a finite-dimensional vector spatéover k.

(i) The mapp : B(G,k) — 2 (V,k) induces aG(k)-equivariant homeomorphism between
Py()(G,k) and the closure of the image pfin 27 (V,K).

(i) Any Landvogt map. : Z(G,k) — #B(PGLy,k) induces aG(k)-equivariant homeomorphism
betweenZ, (G, k) and the closure of its image i#;(PGLy, k).

Conventions. Assumptions on the fielk are made explicit at the beginning of each section.
Notations and conventions froRTWO0J] are recalled in section 1.

Let us stress one particular working hypothesis: the resalfloc.cit] were obtained under a
functoriality assumption for buildings with respect to rarchimedean extension of the ground field
(see[loc.cit, 1.3.4]for a precise formulation). This assumption, which is felfilin particular ifk
is discretely valued with perfect residue field or if the graunder consideration is split, is made
throughout the present work.

Structure of the paper. In the first section, we briefly review the constructions @TV0g] and
state the results from [loc.cit] to be used in this work. Theahd section is devoted to the identifi-
cation of Berkovich compactifications with the compactifizas introduced inf[Ver07]. The third
section contains a concrete description of the Berkovichpaztification of the building?”™(V,k) =
% (PGLy, k) associated with the projective spa®@/) seen as a generalized flag variety. The last two
sections deal with the recovery of Berkovich compactifaradi via embeddings int@ (V,k), in the
spirit of Satake’s original construction for Riemanniamsyetric spaces. In Section 4, we construct
a canonical @&)-map fromZ#(G, k) to 2" (V, k) for each absolutely irreducible linear representation
of G in V, and we show that taking the closure leads to the Backocompactification of4(G, k) of
typet(P). In Section 5, we rely on Landvogt’s functoriality resultsproduce such a map and derive
the same conclusion.



1. BERKOVICH COMPACTIFICATIONS OF BUILDINGS

This section provides a brief summary of realizations andgactifications of Bruhat-Tits build-
ings in the framework of Berkovich’s non-Archimedean atialgeometry. We refer tqgTWOJ] for
proofs, details and complements.

In the following, we consider a non-Archimedean fiéldi.e., a field endowed with a complete
non-Archimedean absolute value which we assume to be nagltand a semisimple and connected
lineark-group G.

(1.1) For each poink of the Bruhat-Tits buildingZ (G, k), there exists a unique affinoid subgroup
Gy of G?" satisfying the following condition: for any non-Archimeate extension Kk, the group
Gx(K) is the stabilizer o in G(K), wherexx denotes the image of under the natural injection
PB(G,k) — A(G,K). Seen as a set of multiplicative seminorms on the coordalgebras’(G) of G,
the subspace Gcontains a uniqgue maximal point, denoteddfk). One can recover (Ffrom 3 (X)

as its holomorphic envelope:

Gy ={z€ G*; |f|(2) < |f|(9(x)) forall f € O(G)}.

We have thus defined a map
9 : B(G,k) — G*"

which is continuous, injective and(&)-equivariant with respect to the(&§-action by conjugation
on G™". By its very constructior¥ is compatible with non-Archimedean extensionk.of

(1.2) We let PafG) denote thé&-scheme of parabolic subgroups of G; this is a smooth aneégirog
scheme representing the functor

Sch/k — Sets S~ {parabolic subgroups of & S}.

The connected components of F&y are naturally in bijection with Gék?|k)-stable subsets of ver-
tices in the Dynkin diagram of G k?. Such a subssdtis called atypeof parabolic subgroups of G
and we denote by P46G) the corresponding connected component of ®arFor example, Pan(G)

is the scheme of Borel subgroups of G whereas the trivial tgpeesponds to the maximal parabolic
subgroup G. Finally, a typeis said to bek-rational if Par (G) (k) # @, i.e., if there exists a parabolic
subgroup of G of typé.

With each parabolic subgroup P of G is associated a morplisnG — ParG), defined functor-
theoretically byg — gPg~* and inducing an isomorphism from/@8 to the (geometrically) connected
component of P&() containing thek-point P. Composing? with the analytification ofwp, we
obtain a continuous and(&)-equivariant map from#(G, k) to Pa{G)2" which depends only on the
typet of P. This map is denoted b$; and its image lies in the connected component(Baf" of
ParG)2". The mapd; only depends on the tygenot on the choice of P in B&6)(k). It is defined
more generally for any typeof parabolic subgroups, even n&rational ones; however, we restrict
to k-rational types in this section.

The topological space underlying P@2" is compact, hence leads to compactifications of the
building #(G, k) by closing. From now on, we fix rational typet and describe the corresponding
compactification of#(G,k). If S is a maximal split torus of G, we recall that 8 k) denotes the
corresponding apartment in the buildifgy( G, k).

Definition 1.1 — For any maximal split torusS of G, we let A((S,k) denote the closure of
9:(A(S,K)) in PafG)2". We set

gt(G, k) = Uﬂt(S, k) C Par(G)a”,
S



where the union is taken over the set of maximal split toiGofThis is aG(k)-invariant subset of
Pai(G)2", which we endow with the quotient topology induced by therabG(k)-equivariant map

G(k) X Kt(S, k) — @t(G, k)
(See RTWO09Y, Definition 3.30].)

The typet is said to benon-degeneraté it restricts non-trivially to each almost simple factdr o
G, i.e,, ift, seen as a G@®|k)-stable set of vertices in the Dynkin diagram D ofk@k®, does not
contain any connected component of D. In general, theré exissemisimple groups 'HH” and a
central isogeny G- H' x H” such that has non-degenerate restriction tbarnd trivial restriction to
H”. In this situation, (G, k) = #(H’, k) x Z(H" k) and we let%; (G, k) denote the facta#(H’ k).

Proposition 1.2 — (i) The map%; : (G, k) — ParfG)2"factors through the canonical projection
of B(G, k) onto %, (G, k) and induces an injection of the latter building RarG)2".
(i) If the field k is locally compact, the; (G, k) is the closure of$; (%(G,k)) in Pa(G)2", en-
dowed with the induced topology.

(See RTWO9, Proposition 3.34].)
If k is not locally compact, the topological spagh(G,Kk) is not compact. However, the map
S : %(G,K) — %(G,K) stillinduces a homeomorphism onto an open dense subsét(, k).

(1.3) The topological space’;(G,k) carries a canonical stratification whose strata are lower-
dimensional buildings coming from semisimplications atale parabolic subgroups of G.

We can attach to each parabolic subgroup Q of G a closed andtlsraobscheme Og®) of
Pat(G), homogeneous under Q and representing the subfunctor

Sch/k — Sets S+ { parabolic subgroups of &y S }

of typet, osculatory with Qx<x S

We recall that two parabolic subgroups of a reductive Sqgismheme are osculatory if, étale locally
on S, they contain a common Borel subgroup. Lettingd@note the semisimplegroup Q/radQ),
the morphismig : Osg(Q) — Pak(Qss) defined functor-theoretically by P (PN Q)/radQ) is an
isomorphism.

There exists a largest parabolic subgrodp@bilizing OsgQ). By construction, we have Q QY
and Osg Q') = Osg(Q), and we say that Q isrelevantif Q = Q. In general, Qis the smallest
t-relevant parabolic subgroup of G containing Q.

Example 1.3 — a) Ittyi, denotes the type of minimal parabolic subgroups of G, theh parabolic
subgroup of G ismin-relevant. Indeed, for any two parabolic subgroups P ando@ that QC P, there
exists a minimal parabolic subgroup contained in P but n@;ithis implies Osg, (Q) # Osg,,,(P),
hence Q is the largest parabolic subgroup stabilizing, Q&Q).

b) Let V be a finite-dimensiond-vector space. We assume thatEG’GLy and thatd is the type
of parabolic subgroups of PGlLstabilizing a hyperplane. In this case, R&@) is the projective space
P(V), i.e., the scheme of hyperplanes in V. Each parabolic suipg€d of PGly is the stabilizer of
a well-defined flag V¥ of linear subspaces, and two parabolic subgroups are ¢sgulband only if
the corresponding flags admit a common refinement, i.e. uftags of the same flag. It follows that
Osg(Q) is the closed subschenigV /W) of P(V), where W is the largest proper linear subspace of
V occurring in the flag V, and therefore-relevant parabolic subgroups of P(zlare precisely the
stabilizers of flagg${0} C W C V), where W is any linear subspace of V.

We can now describe the canonical stratification on the cetifigal building %; (G, k).

Theorem 1.4 — For any parabolic subgrou® of G, we use the mapglo Y¢ to embed%; (Qss, K)
into Osg(Q)2" C Pag(G)2".

(i) As a subset dPag(G)2", the building%(Qss K) is contained in%; (G, k).



(i) We have the following stratification by locally closed sufise
@t(GJ() - |_| '@t(QS& k)7

t-relevantQ’s
where the union is indexed by the t-relevant parabolic sobgs ofG. The closure of the stra-
tum % (Qss, K) is the union of all strate; (Pss, k) with P C Q and is canonically homeomorphic
to the compactified buildings: (Qss K).

(See RTWO09, Theorem 4.1].)

Example 1.5 — a) Suppose that= ty, is the type of minimal parabolic subgroups of G. This type
is non-degenerate and each parabolic subgroup ofgiselevant, hence the boundary#t . (G, k)
contains a copy of the building of or each proper parabolic subgroup Q of G.

b) Let V be a finite-dimensiondf-vector space. We assume that=G?GLy and thatt = 0 is
the type of parabolic subgroups of Plistabilizing a hyperplane. In this case, the boundary of
P5(PGLy,K) is the union of the buildings(PGL(V /W),k), where W runs over the set of proper
non-zero linear subspaces of V.

(1.4) We now look at the compactified apartmekt(S k) of a maximal split torus S of G. The
apartment AS, k) is an affine space under the vector spa¢8)\= Homa, (X*(S),R), where X(S) =
Hom_g, (S,Gmy) is the group of characters of S. Lét= ®(G,S) C X*(S) denote the set of roots
of G with respect to S. With each parabolic subgroup P of Gainirtg S we associate i¥eyl cone

C(P)={ueV(S); (a,u) >0 forall rootsa of P},

which is a strictly convex rational polyhedral cone ifS). The collection of Weyl cones of parabolic
subgroups of G containing S is a compléa on the vector space (), i.e., a finite family of strictly
convex rational polyhedral cones stable under intersectiowhich any two cones intersect along
a common face, and satisfying the additional condition Yhe8) is covered by the union of these
cones.

Relying on thek-rational typet, we can define a new complete fan oSy, which we denote by
Z. The fan of Weyl cones will turn out to b .. First of all, if P is a parabolic subgroup of type
containing S, we define;(P) as the "combinatorial neighborhood” &fP) in V(S), i.e.,

aP= U Q.
Q parabolic
ScQcP
This is a convex rational polyhedral cone, andRJ is strictly convex if and only if the typé is
non-degenerate. More precisely, the central isogeny & x H” introduced after Definitiofi 1.1
corresponds to a decomposition®dfas the unior®®’ U ®” of two closed and disjoint subsets, and the
largest linear subspace of (@) is the vanishing locus ab”, namely

(@") ={ueX*(S); (a,u)y=0 foralla € ®"}.

When P runs over the set of parabolic subgroups of G of tygrel containing S, one checks that the
set.%;, consisting of the cones; () together with their faces, induces a complete fan on theepiot
space \(S)/(®").

Any strictly convex rational polyhedral cone C in($) has a canonical compactificati@) whose
description is nicer if we switch to multiplicative notatidor the real dual of X(S). Hence, we set
A(S) = Homap (X*(S),R~p) and use the isomorphisi — R, x — € in order to identify \S)
with A(S).

Let M denote the set of charactgyse X*(S) such that(x,u) < 1 for anyu € CC A(S). Thisis a
finitely generated semigroup of'¥S) and the map

C— HomMon(M>]ov 1])7 u— (X = <X,U>)



identifies C with the set Hogpn (M,]0,1]) of morphisms of unitary monoids, endowed with the
coarsest topology making each evaluation map continuoesdefineC as the set Hoggn (M, [0, 1))
endowed with the analogous topology; this is a compact sipasich C embeds as an open dense
subspace. Each complete fan of strictly convex rational polyhedral cones 6iiS) gives rise to a
compactification\(S)” of this vector space, defined by gluing together the comiizations of the
cones C= .#. More generally, one can compactify in this way any affinecepander\(S).
Proposition 1.6 — Let S be a maximal split torus o&s. The compactified apartmedt (S k) is
canonically homeomorphic to the compactificatiorAdS, k) / (®”) associated with the complete fan
Fi.
(See RTWO9, Proposition 3.35].)
The connection betwednrrelevant parabolic subgroups on the one hand and conesdimipto
% on the other hand is the following.
Proposition 1.7 — For each parabolic subgrouf of G containingS, there is a smallest cor@ (Q)
in .% containing the Weyl con&(Q). The following two conditions are equivalent:
() Qist-relevant;
(i) Q is the largest parabolic subgroup defining the c@ié€Q).
In particular, the mapQ — C;(Q) gives a one-to-one correspondence between t-relevanbphca
subgroups containin@ and cones in the fai#.

(See RTWO09, Remark 3.25].)

(1.5) For any parabolic subgroup Q of G containing S, the cop@Cadmits the following root-
theoretic description. Let P be a parabolic subgroup of tygseulatory with Q. We have

Ci(P)={zeA(S); (a,2) < 1foralla € d(rad'(P°?),S)},
and G(Q) is the face of @P) cut out by the linear subspace
(G(Q)) ={zeA(S); (a,z) =1 foralla € P(Lg,S)Nd(rad'(P°P),9)},

where rad(-) stands for the unipotent radical ang tenotes the Levi subgroup of Q associated with
S (RTW09, Lemma 3.15)).

One deduces the following root-theoretical charactdomadf t-relevancy. Let S be a maximal
split torus of G. We fix a minimal parabolic subgroup & G containing S and writé for the
corresponding basis @(G,S), which we identify with the set of vertices in the Dynkin diagh of
G. The map

parabolic subgroups of _
{ containing S — {subsets of\}, Q— Yo=AN®P(Lg,S)
is a bijection.
Proposition 1.8 — LetQ be a parabolic subgroup @. We denote by the subset of associated
with the parabolic subgroup of type t containiflg and letY o denote the union of the connected
components of g meetingA — Y.

(i) The parabolic subgroug is t-relevant if and only if for any roatr € A, we have
(a €Y and GL%):>GEYQ.

(i) More generally, the smallest t-relevant parabolic subgraf G containing Q is associated
with the subset oA obtained by adjoining t&/ g all roots in Y which are orthogonal to each
connected component ¥4 meetingA — Y.

(iii) The linear subspace @f(S) spanned by the cor@ (Q) is the vanishing locus of o:
(C(Q)) ={zeA(S); (a,2) =1 forall a € Yq}.
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(For assertions (i) and (i), seRTWO09, Proposition 3.24] and§TW09, Remark 3.25, 2]. Asser-
tion (iii) follows from [RTWQO9, Proposition 3.22] andTW09, Remark 3.25, 2].)

Here, orthogonality is understood with respect to a scaladyct on X (S) ®z R invariant under
the Weyl group ofP(G, S).

Remark 1.9 — Given a maximal split torus S and a parabolic subgroup Qaoimg S, we have the
following inclusions of cones

€(Q) =Cyz(Q) C G(Q) C Gy (Q)

for any k-rational typet. Up to a central isogeny, we can writgylas the product 1x L” of two
reductive groups such thathas non-degenerate restriction todnd trivial restriction to . This
amounts to decomposirg(Lq, S) as the union of two disjoint closed subsétd.’, S) andd(L",S),
with

®(L',S) = (YQ) N ®(G,S)

if we use the notation introduced in the preceding propmsitlt follows from the latter that the cone
Ci(Q) is the intersection of {4 (Q) with the linear subspace #f(S) cut out by all roots ird(L', S).

(1.6) Finally, we describe the stabilizer of a point@% (G, k).

Theorem 1.10 — Let x be a point in%; (G, k) and letQ denote the t-relevant parabolic subgroup of
G corresponding to the stratum containing x.

1. There exists a largest smooth and connected closed subBdQp of G satisfying the following
conditions:
e Ri(Q) is a normal subgroup d® and containgad(Q);
¢ for any non-Archimedean extensisi’k, the subgrougR;(Q)(K) of G(K) acts trivially
on the stratum?(Qss K).
2. The canonical projectio®ss— Q/R;(Q) identifies the buildings?; (Qss, k) and Z(Q/R:(Q), k).
3. There exists a unique geometrically reduced k-analytigsap Staki(x) of G2" such that, for
any non-Archimedean extensi#irk, the groupStaly;(x)(K) is the subgroup o6(K) fixing x
in @t(G, K)
4. We haveR;(Q)2" C Stal;(x)2" ¢ Q*" and the canonical isomorphisn®?"/R;(Q)3" =
(Q/Ri(Q))2" identifies the quotient grougstall(x)/R:(Q)2" with the affinoid subgroup
(Q/R:(Q))x of (Q/R:(Q))*" attached in (1.1) to the point x 68 (Qss k) = B(Q/Re(Q).k).

(See RTWO9, Proposition 4.7 and Theorem 4.11].)

Remark 1.11 — If Q is a propet-relevant parabolic subgroup of G, then (@di(k) is an unbounded
subgroup of @k). Since radQ) c Ry(Q) C Stak(x) for anyx € %;(Qss K), it follows that any point
lying in the boundary%; (G, k) — % (G,k) has an unbounded stabilizer ir{IG. If the typet is non-
degenerate, the converse assertion is true.

We can give a more precise description of the subgroup ®xk) of G(k) stabilizing a point
x of %(G,k). Let us fix some notation. We pick a maximal split torus S of Gosghcompactified
apartment containg and set N= Normg(S). Let Q denote thé-relevant parabolic subgroup of G
attached to the stratum containirgand write L for the Levi factor of Q with respect to S. We set
L” = R{(Q)NL and let L' denote the semisimple subgroup of L generated by the isotedmost
simple components of L on whidhis non-trivial. Both the product morphism k L” — L and the
morphism ' — Q/R;(Q) are central isogenies. We introduce also the split tor-$L' N S)° and
S// — (L// m S)O.

Let N(k)x denote the stabilizer ofin the N(k)-action onA(S k). Finally, we fix a special point
in A(S,k) and we recall that, for each roate ®(G,S), Bruhat-Tits theory endows the group, (k)
with a decreasing filtratioU (K)r }re|—oo o -
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Theorem 1.12 — Let x be a point in%;(Q, k) and letQ denote the t-relevant parabolic subgroup of
G attached to the stratum containing x.

The groupStal}(x) (k) is Zariski dense il and is generated by the following subgroupssek):

= N(K)x;

— all Uy (k) with a € d(rad’(Q), S);

— all Uy (k) with o € d(L",S");

- all Ua(k)—loga(x) with o € (D(L/,S,)

(See RTWO9Y, Theorem 4.14].)

An easy consequence of this description of stabilizers esféfiowing generalization of well-
known properties of Bruhat-Tits buildings.

Theorem 1.13 — 1. LetSbe a maximal split torus db and setN = Normg(S). The compactified
building % (G, k) is the topological quotient aB(k) x A; (S, k) by the following equivalence relation:
(9.%) ~ (h,y) <= (3ne N(k), y=n-x and g *hn e Stal(x)(k)) .

2. Let x and y be two points it (G, k).

(i) There exists a maximal split tor®in G such that x and y lie it (S k).
(i) The groupStaly;(x)(k) acts transitively on the compactified apartments containin
(i) We have the followingnixed Bruhat decomposition

G(k) = Stakg (x) (k)N (k)Staks (y) (k).

(See RTWO9, Corollary 4.15 and Theorem 4.20].)
(1.7) Many statements listed above are proved by using an exfaititula for the mag when G is
split.

Let P be a parabolic subgroup of G of typpand pick a maximal split torus S of G contained in P.
The morphism

radJ(POp) — PalG), g— ng_l

is an isomorphism onto an open subscheme of®awhich we denote bY2(S,P). Let ®(G,S) be
the set of roots of G with respect to S. Since G is split, thaaghof a special poinb in A(Sk)

determines &°-Chevalley grour? with generic fibre G. Any Chevalley basis in I(i¢)(k°) leads to
an isomorphism of rafP°P) with the affine space

r]pUar: rlﬁ%a
ae ae

where¥ = ®d(rad'(P°P), S) = —d(rad'(P), S).
Proposition 1.14 — We assume that the gropis split and we use the notation introduced above.

(i) The mapd; sends the point o to the point 6X(S,P)2" corresponding to the multiplicative
(semi)norm
k[(Xa)aqu] — R?O, Z avxv — maX’a\,‘
veNY Y
(i) Using the point o to identify the apartmehtS, k) with the vector spaca(S) = Homap (X*(S),R-0),
the mapA(S) — ParG)2" induced byd; associates with an element u &fS) the point of
Q(S,P)2" corresponding to the multiplicative seminorm

K[(Xa)aew] = Rzo, Y ayX¥—maxjay| |'L<u,a>"(°’>.
v ac

veNY

(See RTWQ9, Proposition 2.18].)
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2. COMPARISON WITH GLUINGS

We show in this section that the compactifications definefiarD7] occur among the Berkovich
compactifications. Lek be a non-Archimedean local field and let G be a connected saplisk-
group. We consider a faithful and geometrically irredueibhear representatiop : G — GLy of
G. In [WerQ7], a compactification#(G,k), of the Bruhat-Tits building is constructed using the
combinatorics of weights fop. It only depends on the Weyl chamber face position of the ésgh
weight of the representation.

(2.1)We fix a maximal split torus S in G and denote®dy= ®(G, S) the root system of G with respect
to S. We denote by W the Weyl group®fand choose a W-invariant scalar produ¢t on the charac-
ter group X (S) of S, which we use to embed'XS) in the vector spacA(S) = Homap (X*(S),R~0)
via the map

X*(S) = A(S), x> e,

Let A be a basis ofp. For every subset Y o\, we denote as inVJer07] by P§ the standard
parabolic subgroup associated with Y; in particuld,i®the minimal parabolic subgroup of G con-
taining S and corresponding th The weights with respect to the action of S on V are called the
k-weights ofp. If T is a maximal torus containing S andkf/k is a finite extension splitting T, then
we have a natural projection

X*(T @) — X*(Sark) = X*(S)

and there exists a basls of ®(G @y K, T @kK) lifting A. With the basis\’ is associated a well-
defined character of ®k k', thehighest weigh\o(4’), whose restriction to S does not depend on any
choice made for T andA’. This character of S, denotéd(A), is called the highedt-weight of p
with respect ta\; it defines an element if(S) lying in the Weyl coneZ(P5). Setting

Z={aeh; (Ao(8)|a) =0},
the linear subspacgxr = 1 ; a € Z} cuts out the only face af(P5) whose interior containao(A).
The purpose of this paragraph is to prove the following teeor

Theorem 2.1 — Let 7 denote the type of the parabolic subgroB%x The compactified buildings
@(G,k)p and % (G, k) are canonically isomorphic, and is the only k-rational type satisfying this
condition.

Remark 2.2 — Up to conjugacy, it is clear that the parabolic subgrogmiBes not depend on the
choice of S and\. Therefore, thé-rational typet(P2) is canonically associated with the absolutely
irreducible representatiop. One the other hand, the theory of highest weights of irriddieidinear
representations of split reductive groups singles outrafiyua well-defined type(p) of parabolic
subgroups of G, maybe ndarational: the connected component £3(G) of ParG) is charac-
terized by the condition that, for any finite extensidiik splitting G, this component contains all
the maximal parabolic subgroups of G stabilizing a highest in V @y k' (see paragraph 4.1). We
conclude this article by establishing thaP%) is the uniquek-rational type defining the same com-
pactification of%(G,k) as the type(p) (cf. [RTWO9Y, Appendix C]); equivalently, the compacti-
fication (G, k), defined in [Wer07] is canonically isomorphic to the Berkovich compactifioati

P(p)(G,K) (see Propositiofi §.4).
Before proving this theorem, we can derive at once a compangth the group-theoretic com-
pactification GROS].

Corollary 2.3 — Let tyin be the type of a minimal parabolic subgroup@f We denote by z i
the set of vertices in the Bruhat-Tits building(G,k). Then the closure of ;) in the maximal
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Berkovich compactificatioms; , (G,k) is G(k)-equivariantly homeomorphic to the group-theoretic
compactification oz -

Proof of corollary. By [[GR08, Theorem 20], the group-theoretic compactification’gfc i) is G(k)-
equivariantly homeomorphic to the closure’f g k) in the polyhedral compactification o#(G, k)
defined by E. Landvogt. ByWer07], we know that the latter compactification ig3-equivariantly
homeomorphic ta%(G, k), wherep is any weight lying in the interior of some Weyl chamber, ,i.e.
such that Z= @ with the notation above. Our claim follows from Theorgn 2.1. 0

Recall that everk-weight of p is of the formAg(A) — ¥ 5eaNg o for certain non-negative integers
Ng. We denote byAo(A) —A] = {a € A; ng > 0} the support ofAg(A) — A. In [Wer07, Definition
1.1], a subset X- A is calledadmissible if the set YU {Ag(A)} is connected in the following sense:
the graph with vertex set ¥ Ag(A) and edges between alland such that a|f) # 0 is connected.

The following lemma is well-known, at least in characteci§t[[BT65, 12.16]. Itis a link between
the abstract root-theoretic definition of admissibilitydats interpretation in terms of representations.

Lemma 2.4 — A setY C A is admissible if and only if there exists a k-weightwhose support
[Ao(A) — u] is equal toY .

Proof. For the sake of completeness, we show that this statemédd fwhatever the characteristic
of kis. In order to be short, we freely use the notation, §24.B], which sums up the basic
results of representation theory of reductive groups ovgitrary fields. In particular, given G as
above, we denote by’Ethe unique Weyl G-module of highest weightand by P its unique irre-
ducible submodule (which in turn determine$)Ein characteristic 0, we have’ = E*. Note that
in the setting of this section, the G-module V is isomorpbisome B and remains irreducible after
extension of the ground field to the algebraic closurk. of

Let us first assume that Y is the support of some weight. Sihedrteducible module Fis
a submodule of the Weyl G-module! Fwe deduce that Y is the support of some weight for E
Moreover the Weyl module Ehas the same character formula as the irreducible moduligbést
weightA in characteristic 0, so the connectedness of the graph wodsideration comes from the
result in this casefT685, 12.16]. Note that we use the classification of semisimpbe:gs in order to
find a group over a field of characteristic 0 having the sameesgmtations as G.

Conversely, let us assume that the graph fo(A)} is connected. Recall that the set of weights
is stable under the spherical Weyl group. We investigatetfiescase when Y is connected. We write
Y ={B1,B2,...,Bm} in such a way tha; is connected tdo(4) (i.e., (Ap(A) | B1) # 0) and that for
anyi < mthere existsj < i such thatf; is connected t¢B; (i.e., (B | Bj) # 0). Then it is easy to

show by a finite induction oh < m, that the support of the weighgrg ,...rg (Ao(4)) is equal to

{B1,B... ,B}. Indeed, forl =1 this is clear sinceg, (Ao(A)) = Ao(A) — 22481 B;; and to pass

from one step to the next one, we argue as follows. First, we:ha

-1
rgrg 1-Tps ()‘O(A)) =Ig (AO(A) - _ZlCiBi> s

with eachc; > 0 by induction hypothesis. This gives:

1 -1 (g
el .- (Ao()) = Ao(B) — _;ciﬁi -2 <%ﬁﬁl)ﬁl) - _Zci%> B,

which implies our claim by the numbering of tiigs and the fact thadp(A) is dominant.

In the general case, we use a numberingY¥, ... Y5 of the connected components of Y. The
previous argument shows that there is a weight, (sayith support equal to ¥. Then we note that
for eacha € Y1 and eacl8 € Y, we haverg(a) = a. This allows us to apply the previous argument,
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replacingAo(A) by p and Y by Y,. Our claim follows by induction on the number of connected
components of Y. O

(2.2) For every admissible subsetcY A we set
Y*={ael; (alAds(d)) =0and(alY) =0}
and let @ denote the cone in(S) defined by the following conditions

a=1, foralla €Y
Ao(A)—A =1 for all k-weightsA such thafAg(A) —A] Z Y.

Identifying the additive and multiplicative duals of ¥S) via the mapR — R.o, X+ €%, the cone
C8 C A(S) is the closure of the subsef Fof V(S) = Homap (X*(S),R) defined in [Ver07, section
2]. Itis shown in [loc. cit.] that \(S) is the disjoint union of the subsetéFWhere Y runs over the
set of admissible subsets &f
Lemma 2.5 — Recall thatZ = o* and lett denote the type of the parabolic subgraeh

(i) A subsety of A is admissible if and only if each of its connected componeristsA — Z.
(i) For any admissible subs#tof A, we have

C$ = Cr(Pe)-

(i) The correspondencg — P$UY* is a bijection between admissible subset& aind 7-relevant
parabolic subgroups containings.

Proof. (i) This assertion is clear, since Y{Ao(A)} is connected if and only if each connected
component of Y contains a roat € A with (a|Ag(A)) # 0, i.e., a root il — Z.

(ii) Let Y be an admissible subset Af It follows from (i) and from Propositiofi 1.8 (iii) that the
linear spacga = 1; a € Y} cuts out a face of the cone(P5), namely the cone EP). Since this
subspace cuts out the facé 6f CZ, it suffices to check that the cones(€5) and G coincide.

Let A’ be another basis of the root systapn If Ag(A") = Ag(A), then everyx in the Weyl cone
¢(PY) satisfies(Ag(A) — A)(x) > 1 for all k-weightsA, hence¢(PY) is contained in €. On the
other hand, every point in the interior o£Gs contained in the Weyl coné(Pg') for some basig'.
By [Wer07, Proposition 4.4 and Lemma 2.1], this impli&sg{A’) = Ap(A). Hence & is equal to the
union of all Weyl cone=(P) with Ag(A) = Ao(&'). By definition, the cone @P5) is the union of
all €(P%) such that the minimal parabolic subgrouf) B contained in B. Therefore, it remains to
check that\g(A) = Ao(&'), if and only if P5 is contained in .

Let n be an element of Norg(S)(k) satisfyingnP3n—1 = P&, and letw be its image in the Weyl
group W of®. Thenw(A) = A', hencew(Ag(A)) = Ao(4'). Besides, we havePon~1 = Pﬁv’(z).

Assume thaf\g(A) = Ao(4'). Thenw fixes Ag(A), which implies thatv(Z) = Z since the scalar
product on X(S) is W-invariant. Besides, for eveny € A — Z there exists &-weightA such that
[Ao(A) —A] = {a} for {a} is an admissible subset &f Sincew(A) is a weight andv(Ag(A)) =
Ao(A), we deduce that(a) is a positive root fold. Hence B contains rgw =P,

Now assume that¥= nP5n—1 is contained in . Thenn is contained in B, which implies that
wis in the Weyl group of the paraboliéPHencew is a product of reflections corresponding to roots
in Z. Since roots in Z are perpendicularXg(A), the corresponding reflections lealgA) invariant
and therefore\p(A') = w(Ag(A)) = Ag(A).

(iii) Let Y be an admissible subset &f By Proposition 1]8 (i), the smallestrelevant parabolic
subgroup containing {Pis P{,, where Y is obtained by adjoining to Y all roots in Z which are
perpendicular to each connected component of Y medirgZ, hence to Y by (i). It follows that
Y’ =YUY*. Conversely, if B is a t-relevant parabolic subgroup, then(€2) = C§ for some
admissible subset Y andiC= C(P§) by (i). It follows from what we have just said tha§ R, is the
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smallestr-relevant parabolic subgroup containing, Pence G(P2) = C§ = C.(P§,y.) and therefore
Z=YUY" O

Thus, the fan consisting of all polyhedral cone% €incides with the fanZ; defined in (1.4).
Note that the type is non-degenerate since the representatias faithful. Relying on RTWO0Y,
Proposition B.3], it is not hard to check that the identitypnwd the apartment £S,k) extends to a

homeomorphisnj between the compactificatiol; (S, k) = A(S,k) k) introduced in Definitiorf 1|1
and the compactificatioA (S k), of A(S k) defined from a different viewpoint iffer07, Sect. 2]

(where it is simply denoted). This homeomorphism is compatible with the action of theugp
Normg(S)(k) on each space since this action is in both cases the uniqtiewmus extension of the
standard action of Norg(S) (k) on A(S,k).

(2.3) Seen as a function(S) — R-, each roota € ® has a continuous extensian: C — [0, o]

for every cone C in the fa; over which eithera < 1 or a > 1; this is obvious if we write

C = Homyon (M, ]0,1]) andC = Homyon (M, [0, 1]), where M is the saturated and finitely generated
semigroup in X(S) defined by

M={aeX (S, ac<1}
If T =tminis the type of a minimal parabolic subgroup, théh is the Weyl fan and every roat
satisfiesoc < 1 orajc > 1 for each cone € 7, , hence extends continuously to the corresponding

compactified vector spad®(S)”min. Since we have either < 1, a > 1 ora = 1 on the interior F
of each face F of @ %, the extensiomr of o to C satisfies

a‘CF =0 if e < 1,
O<c <o if ap=1,
a‘CF =0 if A > 1,

where G is the stratum ofC corresponding to the face F, namely the subset afefined by the

conditions
¢ =0, forall ¢ € Msuch thatpr# 1,
¢ >0, forall$ €M such thatpe=1

This situation is illustrated by Figure 1 below with-6SL(3).

In general, we can always extend each r@db aupper semicontinuouiinction a : Wyt —
[0, 0] by setting
a(x) =sup{c€R.o; xe {a >c}}.
This function coincides with the continuous extensmm@f to C for any cone C over whiclr < 1

ora > 1. In general, given a cone C and a face F of C, the upper setitigons extensiomr of a to
C satisfies

a‘cp =0 if Cf“:o <1
O<Oce <o ifap=1

a‘CF =0 if A > 1
dce = ® otherwise

This follows easily from the existence of an affine functfnC —|0, 1] such thair =1
This situation is illustrated by Figure 2 below, where-GSL(3) andrt is a type of maximal proper
parabolic subgroups.

With each pointx of A(S,k),, is associated in\ffer07] a subgroup R of G(k) defined as fol-
lows. Set N= Normg(S) and recall that Bruhat-Tits theory provides us with a desirgafiltra-
tion {Uq (K)r }re[—w,e) ON €ach unipotent root groupgk), with Ug (K) _ jog(e) = Ua (K)—w = U (K)
and Uy (K)_jog(0) = Ua (K)o = {1}. Then R is the subgroup of (k) generated by tk)x = {n €
N(k); nx=x} and Uy (K)_joga(x) for all o € @.
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Let Q be ar-relevant parabolic subgroup of G containing S and denote the Levi subgroup
of Q associated with S. We consider the following decompmsiof ® in mutually disjoint closed
subsets:

¢ = (—d(rad'(Q),S)) UP(rad'(Q),S)UP(L",S)ud(L",S"),
where L and L are the normal and connected reductive subgroups of L sathtt natural mor-
phisms ' x L” — L and L' — Q/R(Q) are central isogenies, and wheread & are the connected
components of 8IL” and SVL” respectively (see the discussion before Thedren] 1.12).iv&qu
lently, the subse®(L’,S) of ®(L,S) is the union of root system®(H,S), where H runs over the
set of quasi-simple components of L on which the restricobrr is non-trivial, and®(L"”,S") =
d(L,S)—d(L',S).

—

Lemma 2.6 — Let x be a point in the stratuid = A(S,k)/(C;(Q)) of A(S,k)
(i) For any roota in @, we have:
a(x)=0and—a(x)=w if acd(rad'(Q%),S);
a(x)=cand—a(x) =0 if ac—d(rad'(Q°),S);
a(x)=—a(x)=w if acdlL” S,
0<a(x) <o if ae®d(L’,S).
(i) Py = Stakk(x)(Kk).
Proof. (i) This assertion follows from the identities
d(rad(Q°),S) = {a € ®; a < 1 on the interior of G(Q)},
Ol S)={aecd; a=10onG(Q)}
and
®(L",S")={a € ®; o takes values< 1 and > 1 on G(Q)}
(see Remark 1].9).

(i) This assertion follows immediately from (i) and frometlexplicit description of Sta}{x)(k) in
Theoren{ 1.72 since bothRNnd Stag(x)(k) are the subgroups of (®) generated by Kk)x and all
Ua (K)_1oga(x), @ € P. O

The compactification(G, k), defined in [Wer07] is the topological quotient of &) x A(S, k),
by the following equivalence relation:
(9.X) ~ (hy) <= (3ne N(k), y=nx andg *hne Py).

It follows immediately from assertion (ii) in the previowenhma and from the first assertion of Theo-
rem[1.1B that the canonical homeomorphism

G(K) xASK " —> G(K) x A(SK),
induces a Gk)-homeomorphism between the compactified buildigigG, k) and Z(G,k),.

Uniqueness of thé-rational typet such that the compactification®(G,k), and %:(G,k) are
isomorphic is easily checked. For akyational typet’ satisfying this condition, the compactifica-
tions % (G, k) and % (G, k) are Gk)-equivariantly homeomorphic. This homeomorphism ideggifi
0-dimensional strata; taking stabilizers ik} we obtain two parabolic subgroups P arldftypes
T and1’ respectively, which satisfy(R) = P/(k), hence P= P by Zariski density of rational points in
parabolics and, finallyt’ = T.



FIGURE 1. Compactified apartment % (SL(3),k)

FIGURE 2. Compactified apartment i@, (SL(3),k), with T # @
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3. SEMINORM COMPACTIFICATION FOR GENERAL LINEAR GROUPS

We assume in this section that the non-Archimedean #elsl discretely valued. In the fol-
lowing, we study a particular compactification of the buigliz(PGLy,k) of PGLy, where V is
a finite-dimensionak-vector space. From Berkovich’s point of view, this is thengactification
%5(PGLy,k) associated with the flag variety B&PGLy ) = P(V), classifying flags of typé(0) C
H C V), where H is a hyperplane of V. One can give another descnigifahis compactification as
the projectivization of the cone of non-zero seminorms othéreby extending Goldman-lwahori's
construction of the buildingZ(PGLy,k). This compactification of8(PGLy,k) should be seen as
the non-Archimedean analogue of the projectivization ef¢bine of positive semidefinite hermitian
matrices for a finite-dimensional complex vector spaceldtier being the ambient space for Satake
compactifications of symmetric spaces.

Starting with some reminder of Berkovich’s nof@dr99] and of the third named author’s paper
[Wer04], we give an elementary description of the compactifieddig % 5(PGLy,k) and make
everything explicit: convergence of seminorms, strahizers. An important feature of this com-
pactification is the existence of a canonical retractior?(V)2" — Z5(PGLy,k).

(3.1) Let S’V be the symmetric algebra of thevector space V. This is a grad&enlgebra of finite
type whose spectrum (whose homogeneous spectrum, reghgcis the affine spacé (V) (the
projective spac@®(V), respectively):

A(V) = Spe¢S'V) and P(V) = Proj(S"V).

The underlying set of thk-analytic spacé\ (V)a" consists of all multiplicative seminorms of\&
The underlying set of thke-analytic spac®(V)2"is the quotient of\(V)2"— {0} by homothety: two
non-zero seminorms,y are equivalent if there exists a positive real numbesuch that|f|(y) =
A" f|(x) for any natural integen and any element € S"V.

Let .7 (V,K) be the set of all seminorms on the vector space V an®1éV k) be the quotient of
7 (V,k) — {0} by homothety: two non-zero seminormsndy on V are equivalent if there exists a
positive real numbeA € R-q such that f|(y) = A|f|(x) for any f € V. Since each (multiplicative)
seminorm on SV induces a seminorm on ¥ SV by restriction, we have a natural mapA (V)3 —
Z(V,k) such thatr(x) = 0 if and only if x=0. This map is obviously compatible with the above
equivalence relations and therefore descends to amm&gV )" — 27(V,K).

A seminormx on thek-vector space V isliagonalizableif there exists a basié,...,eq) of V
such that for every = S o<i<gaig in'V,

VI(x) = max|ai|&|(x)-
Proposition 3.1 — Any non-zero seminorm on the k-vector speds diagonalizable.

Proof. As the absolute value &fis assumed to be discrete, this fact is established by FaBarid J.
Tits in BT84k, Proposition 1.5 (i)]. It was initially proved by A. Weil ifne locally compact casé&l

Diagonalizability of seminorms on V allows us to define a gdoal sectionj for both maps
1. Given a pointx in .(V,k) — {0}, pick a diagonalizing basi&,...,es) of V and consider the
multiplicative seminorm defined or*8 by

d
> Ave’ - maxiAy| i|:L|<—31|(X)Vi-

veNd

For any multiplicative seminorraon SV inducingx on V, we have:

€’1@ = [] l&l@" = [] lal)",

o<i<d o<i<d
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hence

) < max\)\vHe |(2) max])\ \rlye.\

Thus, the seminorm WhICh we have just defined 04 B maximal among multiplicative seminorms
on S (V) inducingx on V and therefore it does not depend on the basis we pickedl] lie denoted

by j(x). We also sef(0) =0. The mapj : .(V,k) — A(V)2" so obtained is obviously a section of
T such thatj(x) = 0 if and only if x= 0. Moreover, this map is compatible with above equivalence
relations, hence descends to a map?”(V,k) — P(V)2"which is a section of.

Proposition 3.2 — (i) For any points »x .7 (V,k) and ze A(V)2"with 7(z) = x, we have
z< j(x).
(i) If we equip the sets”(V,k) and 2" (V, k) with the natural actions of the grougdLy andPGLy

respectively, then the maps 77 (V,k) — A(V)2and1: A(V)*"— Z(V,K) (J : Z(V,k) —
P(V)®andt:P(V)2"— 2°(V,Kk), respectively) are equivariant.

Proof (i) We checked this inequality in the discussion above widéning j.

(i) It is enough to prove that the mags: . (V,k) — A(V)2" and 1 : A(V)?" — /(V,k) are
GLy (k)-equivariant. This is trivially true for since this map sends a seminorm dV 3o its re-
striction to V= S'V. For any elements € .7 (V,k) — {0} andg € GLy (k), the pointz= g~1j(gx)
of A(V)3" satisfiest(z) = g~11j(gx) = g~lgx= x, henceg=!j(gx) < j(x) according to (i). Substi-
tuting gx to x andg to g~ in this inequality, we obtaimgj(x) = gj(g~'gx) < j(gx) and therefore
J(9%) = gj(x). D

In the special case of the semisimple group RGInd of the flag variety?(V) = Pai(PGLy),
where 9 is the type of parabolic subgroups stabilizing a hyperplen¥, this elementary picture
provides us with an alternative description of the geneoaistruction of RTWO09Y, 2.4], recalled
in section 1. We thus recover the classical realization eftthilding Z(PGLy,k) as the space of
norms on V up to homothety[@63], [BT84M]) and the construction of a compactification in terms

of seminorms [fVer04].

Proposition 3.3 — There exists one and only one map%s(PGLy,k) — 2 (V,k) such that the
diagram

— 95
<%)Cs(l:)GLv,k) =5 Paly PGLv,k)

| iy

2 (V,K)

is commutative. This map has the following properties:
(i) itis bijective andPGLy-equivariant;
(i) it identifies Z(PGLy,k) with the subset of2"(V,k) consisting of all homothety classes of
norms onV; more generally, given a subspa® of V, 1 identifies the straturs#(V /W, K)
of Z5(PGLy, k) with the subset of2”(V,k) consisting of all homothety classes of seminorms
onV with kernelW;
(iii) for any maximal split torug in PGLy, the map identifies the compactified apartmekg (T, k)
in Z5(PGLy,k) with the set of homothety classesTotliagonalizable seminorms o (i.e.,
seminorms which are diagonalizable in a basid/ofonsisting of eigenvectors for the maximal
split torus inGLy lifting T).

Proof. If it exists, such a mapis unique sincq is injective.
The existence of follows easily from the explicit description of the mdyg recalled in (1.7).
Pick a maximal split torus T in PGLand a basigey, . .., eq) of V consisting of eigenvectors for the
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maximal split torus in Gl lifting T. Using Propositiori 1.4, one sees that the rfigpealizes a bijec-
tion between the compactified apartmént(T, k) and the subset d(V)2" consisting of homothety
classes of all multiplicative seminormson SV satisfying the following condition: there exist non-
negative real numbews, ..., Cq, Not all equal to zero, such thegg, Ave’|(X) = max, |Ay| [o<i<d G -
The subsefs (As(T,k)) of P(V)2"is therefore the image undg¢of the subset27(V, k) of 2" (V, k)
consisting of homothety classes of all T-diagonalizabliserms on V (i.e., diagonalizable by the
split maximal torus of Gl lifting T). Since Z5(PGLy,K) is the union of all compactified apartments
associated with maximal tori in PGl.the image of the maf; is therefore contained in the image
of j. This observation establishes the existence of the apiplicg it also proves (iii).

The mapi is injective, because so 5. Surjectivity follows from the fact that?” (V,K) is the
union of the subsets?7(V,k), where T runs over the set of maximal split tori in RLTo see
that the map is PGLy (k)-equivariant, it suffices to observe thats the compositiort 35 of two
equivariant maps. Indeed, sintg¢=id »-(y k),

jT9s = jTj1 = ji
and thusrds = 1.

We now check (ii). Let W be alinear subspace of V and considen@nornxon V. The pointj(x)
in P(V)3"belongs to the subspa&gV /W)a" of P(V)2"if and only if the seminornj(x) : S’V — R>g
factors through the canonical homomorphisfiVS- S*(V/W). By multiplicativity, this is the case

if and only if x vanishes identically on W. Since the stratw#{PGLy )y, k) of P5(PGLy,K) is the
preimage unde# s of the space

PV/W)— ) P(V/W)
WCW/CV
we conclude that identifies this stratum with the subspace 8f(V,k) consisting of homothety

classes of seminorms on V with kernel W; in particular, thesons a bijection betwee®(PGLy, k)
and the set of homothety classesnofmson V. a

We can introduce a natural topology & (V,k): equip the set”(V,k) with the coarsest topology
such that each evaluation map— |v|(x), v € V) is continuous and consider the quotient topology on
Z (V,K). The mapr : P(V)2"— 2°(V,K) is obviously continuous. If the field is locally compact,
then the mag : 2" (V,k) — P(V)2"is continuous (see point (ii) below).

Proposition 3.4 — The setZ (V, k) is equipped with the topology which we have just defined.

(i) The map : %5(PGLy,k) — 2 (V,K) is continuous and, for any maximal split tortisn PGLy,
it induces a homeomorphism between the compactified apartngT,k) and the subspace
27(V,Kk) of Z°(V,k) consisting of homothety classeslofliagonalizable seminorms oh

(i) If kis locally compact, the mapis a homeomorphism and the map ' (V,k) — P(V)3"is a
homeomorphism onto its image.

Proof. (i) Continuity of 1 is obvious if we write this map as the compositiofi;. Given a maximal
split torus T in PGly, the mapi induces a continuous bijection between the compact spa¢€)
and its image inZ"(V,k); this map is a homeomorphism since the topological spad®/,k) is
Hausdorff.

(ii) If the field k is locally compact, the topological spaég;(PGLy, k) is compact and the contin-
uous bijection onto the Hausdorff topological spack (V,k) is a homeomorphism. The mdy is
a homeomorphism onto its image; writing the mjaas the compositiof 51 ~1, we see that the same
is true forj. O

The topology which we consider off”(V,K) is relevant only if the field is locally compact. In
general, we have to modify it and endo®% (V, k) with the topology deduced fron#5(PGLy,k)
via the bijectioni. Equivalently, pick a maximal split torus T in PGLendow 27(V,k) with the
coarsest topology such that all evaluatigms— |v|(x), v € V) are continuous and equif”(V,k)



21

with the quotient topology deduced from the surjective map
G(k) X <%-T(VJ() - ‘%(V>k)> (g,X) —g-X

The above identification betwee#;(PGLy,k) and 2" (V,k) allows us to describe the subgroup
of PGLy fixing a given pointx of 2°(V,k). Let W be the kernel ok and let P be the parabolic
subgroup of PG, stabilizing W. The subgroup of PGl(k)(k) fixing x is contained in Fk); this
is the extension of the maximal bounded subgroup of P&glk) fixing the norm (induced by) on
V /W by the subgroup of {K) acting trivially on W.

More explicitly, if (ep,...,eq4) IS a basis of V diagonalizingc and chosen so that A
Sparten, .. .,€q4), then RK) is the subgroup of lower triangular block matrices

(2™ crat1omi )

modulo homothety. Moreover, if the basis can be chosen saxtkatisfies|e |(x) = 1 for anyi €
{0,...,m—1}, i.e., ifxis a vertex of2"(V /W, K), then its stabilizer in PGL(k) is a conjugate of the

subgroup of matrices
k*-GL(m,k°) 0
* GL(d+1—mKk)
modulo homothety.
(3.2) Assuming that the fielk is locally compact, we complete our description ﬁf(v,l() =

%5(PGLy, k) in terms of seminorms. We fix a bage,...,eq) of V and denote by T and the
corresponding split maximal tori in PGland GLy respectively. We also denote bythe norm on V

defined by
d
ag
2,

K(o)={ge GLy(k); g-o=0}.

Proposition 3.5 — A complete set of representatives for the actioraf, (k) on .7 (V,k) — {0}
consists of all non-zerd-diagonalizable seminorms x an satisfying0 < |eg|(X) < ... < |e1|(x) <
leo|(X) < g, where g> 1 generates the groufk™ |.

(i) The set% of non-zeroT-diagonalizable seminorms x ovi satisfying0 < leg|(x) < ... <
ler](x) < |eo|(X) is a fundamental domain for th€(o)-action on.#(V, k) — {0}.
Proof. (i) Since each seminorm on V is diagonalizable by some malxaplit torus, it follows from
conjugacy of maximal split tori that each orbit of G(k) in .”(V,k) — {0} meets the set/%(V,k)
of non-zeroT-diagonalizable seminorms.

Let w be a generator of the maximal ideal kff, i.e., |@w| = g1 < 1 generatesgk*|, and pick
v e Nd+1, By definition of the Gly-action on.”(V,k) — {0}, diag@") - o is the T-diagonalizable
seminorm on V such that

|&|(diag@”) -0) = |diag(@™") - &|(0) = [ "e[(0) = q".

Accordingly, for any permutatiow € G41 the permutation matrix(w) maps al-diagonalizable
seminormx to thef—diagonalizable seminorm(w) - X satisfying

l&(n(w) -x) = [n(w) ™ - & |(x) = &1 |(x).
Combining these two observations, one checks immedidtatyetach Glx(k)-orbit in.(V,k) — {0}
meets the subset of;(V, k) consisting of seminormessuch that

0 < |eg|(X) < ... <er](x) < |eg](X) < a.

(ii) As in (i), one easily shows that any(K)-orbit meetsz’.

0) = maX|g
(0) = max ai|

and set
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For any poinxin 27(V, k), we can extend to a seminorm on the exterior algelx&V as follows:
defining as usuat as the producg, A ... A g, for any subset & {i1,...,im} Of {0,...,d} with
i1 < ... <Ip, We set

Zaael

Pickx in .7%(V,k) and assume that we hagex < .#%(V, k) for someg € K(0). If we use the basis
(eo,...,€q) to identify V with k%+1, then K(o) is the subgroup G{d + 1,k°) of GL(d + 1,k). For
eachme {1,...,d}, this observation implies immediately

&%) = |_’ &l(x) and

(9 =maxa| - & ()

maxfe|(g-X) = max|A™g - &|(x) = maxfe) (¥,

where the maximum is taken over all subsets{0,...,d} of cardinalitym. If we assume that both
x andg- x belong to%, it follows recursively thatg|(g-x) = |&|(x) for anyi € {0,...,d}, hence

g-x=Xx. Therefore, each (0)-orbit contains a unique point lying &' O

Convergence of seminorms up to homothetye examine now the convergence of sequences in
2 (V,k), from which one can recover th& (V,K) is a compactification of the Bruhat-Tits building
PB(PGLy,k).

Let (z,) be a sequence at-diagonalizable seminorms. We say that this sequennerimalized
from belowif |g|(z,) > 1 for alli € {0,...,d} and alln > 0 such thate|(z,) # 0. Furthermore, we
say that(z,) is distinguishedf there exists a non-empty subset I{df, . ..,d} such that:
|&|(zn)
lejl(zn)
(b) foranyi e landj € {0,...,d} —1, the sequenc

(a) for anyi, j €1, the sequenc ) converges to a positive real number;
n

lej|(zn)
l&l(zn)

) converges to 0.
n

ic situati [(Z) _ i lail(zn) P i thi
In this situation, we s Sz = limy (lej\(zn)) for anyi, j € I and we say that | is thiandex set at

infinity of the sequencéz,).

The following proposition describes the convergence ofisages in27(V, k). We recall thats’
denotes the subset ofz(V,k) consisting of seminormz satisfying 0< |eg[(x) < ... < e1|(X) <
|€0](X).

Proposition 3.6 — Let(x,) be a sequence of points i1 (V,K).

(i) Up to going over to a subsequence, there exists a sequepce ;(V,K) lifting (x,) and
an element w 0641 such that the sequen¢a(w)z,) is normalized from below, distinguished
and contained ir¥’.

(i) Assume thatx,) comes from a sequen¢a,) of points in% normalized from below and distin-
guished, with index set at infinity We havdim (x,) = X», wWhere % is the homothety class of
thef—diagonalizable seminorm$, defined by picking an element ilofind setting

- Gz it jel;
elZ)={ Rz TIEL
5il(Z) {o if j ¢ 1.
(iii) The topological space?” (V,k) is metrizable and compact. It contains the Bruhat-Titsdiog
of PGLy (k) as a dense open subset.

Proof. (i) Let (z,) be any sequence iot5(V,K) lifting (xn). The seminornz, is non-zero, so the real
numbery,, defined as the minimum of the finite é& |(z,) ; 0<i < d and|g|(z,) # 0}, is positive.
For A, = u,;l, the sequencéA, - z, }n=0 is normalized from below. It is therefore enough to show
that any sequence i3 (V, k) which is normalized from below admits a distinguished sgbsece,

up to multiplication by a permutation matriXw). For simplicity, let us denote again lfg,) such a
sequence.
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Foreach > 0, there exist§, € {0,1,...,d} such thate, |(z,) = max<i<d{|&|(z,)}. The sequence
(in)n takes its values in a finite set, so up to extracting, we maymasghat it is constant. By iterating
the same argument, we fimde &4, 1 such that:

e (zn) = lew)l(z0) = ... = |eya)l(z0)

for anyn > 0, that is such that the sequer(cgw 1) - z,) lies in%.

Note that sinc€z,) is normalized from below, we haye,q)|(z,) > 1 for eachn > 0. For each

>
{0,1,...,d}, let us se3 = limsup, ‘W‘)‘l((z”) :we have: 1= By > B1 > ... > By > 0. Up to extracting,

|Q~<0) Zn)
we may assume that I'wr( ‘g:g"((zz"n))) — 3 for eachi. Define | as the subset ¢, ...,d} consisting of

indicesi such thai3; > 0; note that | contains 0 by assumption, hence is non-emtyafyi, j € I,
the sequence

&) |(Z0) _ 18| (Z0) |ewo)|(2n)
ewiy|(z0)  |ewo)(Zn)  1&w(j)l(Zn)

converges to the positive real numt%rwhereas foranyelandj € {0,...,d} — I the sequence

i) |(Z) _ lew(|(Z) |ew(o)|(z0)
lewi)[(z0)  lewo)l(z0) 8wl (z)

converges to%f = 0. Thus, the sequenca(w1) - z,) is distinguished.
(ii) Let (z,) be a sequence i (V,K) lifting (x,), which we assume to be normalized from below
and distinguished. Let | denote its index set at infinity.c8in
lerl(ze) _ lerd(zo) Jeil(z0) _ Jejl(2)
ler|(zh)  el(zo) lerf(zo)  [&1](20)

for anyi,j,/ €1, the f—diagonalizable seminormad, and z, define the same homothety class in
2 (V,K). Giveni € |, the seminorny}, = |&|(z,) - z, satisfies

er](zn) :{ &l(Z) g g e

lal(z)
l&l(z) 0 if £€{0,....,d}—I

lim e (y) = lim

since the sequendg,) is distinguished and thus the sequerge converges to the seminorg in
< (V,k) —{0}.

(iii) Let ko denote a dense and countable subfieldtk ahd let \4 be akp-vector subspace of V
such that V= Vo ®y, k; this is a dense and countable subset of V. Each non-zermeambon V is
completely determined by its restriction tg\Mence the map

S (V,K) =RV, xi— (vi— [V|(X))

is a continuous injection. Sincg’(V,Kk) is locally compact, this injection is a homeomorphism
of .7(V,k) onto its image. This map induces a homeomorphisn®ofV,k) onto a subspace of
RVo /R and, since the latter topological space is metrizable, st (¥/,k).

It follows from (i) that the image2 of % in 2°(V,k) is compact. The mapr: K(0) x 2 —
2 (V,k) induced by the Gi.(k)-action is continuous, and it is surjective by Proposifio§, ii).
Since K0) ~ GLg4,1(k°), the source is compact; as the target is Hausdorff, comesetof.2" (V, k)
follows.

ldentifying the Bruhat-Tits building#(PGLy,k) with the subspace of2 (V,k) consist-
ing of classes of norms on V, the complementary subspacg/,k) — Z(PGLy,k) = K(0) -
(2N (% (V,k)— Z(PGLy,k))] is closed and therefor#(PGLy,k) is open in2"(V,k). Density is
obvious. O
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Orbit structure We have already observed in Propositjon| 3.3 that the caabilentification

Z (V,K) = %5(PGLy, k) transforms the natural stratification & 5(PGLy, k) into the stratification

of Z°(V,k) by kernels: with each point of 27(V,K) is associated the non-zero linear subspace
V(x)={veV; |v|(x) =0} and two pointx,y € Z"(V,k) belong to the same stratum if}) = V(y).

The set of strata is indexed by the set of non-zero linearpades of V and the stratum associated
with a linear subspace W is canonically isomorphic to théding % (PGLy jw,K).

Given any pointx of 27(V,k), its stabilizer in PGl,(k) is the extension of a maximal compact
subgroup of PGl vy (K) by PGLyx (K), and its Zariski closure is the parabolic subgroup fixing
V(X).

All these assertions can be easily proved starting from éfi@ition of 2" (V, k), without knowing
the structure of the Berkovich compactificatiofis(PGLy,k). One can also show that the unique
closed orbit for the PGl-action onZ"(V, k) consists of the homothety classes of seminorms of the
form |.| o ¢, where¢ is a non-zero linear form on V; this orbit is PG(K)-equivariantly homeomor-
phic toP(V)(k), i.e., to the set of hyperplanes in V.

(3.3)We end this section on the compactified buildi#g (PGLy, k) with a couple of technical results
to be used in the next paragraph.
Recall that, for any Banadkalgebra A and any non-Archimedean extensiotk khe formula

]| :inf{max])\i]-HfiH; AieK,fie Aandf :Zfi@mi}
icl 1=

defines a seminorm on the K-algebrazfK and that A2yK is the Banach K-algebra one gets by
completion BGR84, 2.1.7 and 3.4.3]. The following definition is due to Berkavi[Ber9d, Sect.
5.2].

Definition 3.7. — LetX be a k-analytic space. A point x Kis peakedf, for any non-Archimedean
extensiork /k, the norm on the Banadk-algebra./# (x)&kK is multiplicative.

Let x be a peaked point oK. For any non-Archimedean extensid¢/k, the norm on
A (X)QkK defines a point in# (7 (x)&kK) and ok (x) denotes its image under the canonical
map. (A (X)@kK) — X&kK.

Remark 3.8 — For a pointx in a k-analytic space X, being peaked or not depends only on the
completed residue field? (x).

Lemma 3.9 — For any point x inP(V)2", there exists a point y if\ (V)" lifting x and such that
H(X) = H(y). In particular, each peaked point x iB(V)2" can be lifted to a peaked point in
A(V)an.

Proof. This is obvious since the canonical mapVv)(K) — {0} — P(V)(K) is surjective for any field
extension Kk. O

Proposition 3.10 — Let x be a peaked point &(V)2". For any discretely valued non-Archimedean
fieldK extending k, the canonical injection gf (V,k) into 2" (V,K) maps the point (X) to the point
T(0k(X)).
Proof. Consider a peaked poigin A (V)23 lifting x and denote by (y)k the image off (y) under the
canonical injection?” (V,k) — 2" (V,K). We want to showr (y)x = T(0k(y)).

The pointok (y) in A(V ®kK)2" is the multiplicative seminorm on*8V @ K) = (S°V) @k K
defined by

If|(ok(y)) = inf {rri1€a|1x|/\i||fi|(y); MeEK, fieSVandf = Z f ®/\i}.
IS
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Hence
|f|(T(ok(y))) = inf {rri1€a|1x|)\i||fi|(y); AieK, fieSlv=Vandf = Z fi ®)\i}
le

foranyf € V@kK.
Pick a basigey, ...,eq) of V diagonalizingt(y). Givenf = i, fi ® Aj in V @K, we can write
fi = Yo<j<aij€j, and

max|A[[fi(y) = meqXIAilorgj%lajllejl(y)

= max max|/Ailla;il|e;
max max e (¥)

;)\iaij

max il il(y) > [F1(T(¥)).

WV

max
o<j<d

;[ (y)-

We conclude that

hencel f[(T(y)k) < [f[(Tok(Y)).
The converse inequality is obvious: for ahy= 5o<j<qai& in V @K,
[fl(Tok(y)) = [fl(gk(y)) < max|aile](ok(y))

o<i<d

< max|allal(y) =[fl(T(y)x)|

o<i<d
and we finally get
T(Y)k = T0k(Y).

4. SATAKE COMPACTIFICATIONS VIA BERKOVICH THEORY

In [Bat6(), Satake considers a Riemannian symmetric spae&s3K of non-compact type. Using
a faithful representatiop of the real Lie group G in PSIn,C), he embeds S in the symmetric space
H associated with PSh, C), which can be identified with the space of all positive dedifiermitian
n x n-matrices of determinant 1. Observing that H has a natunaipeetificationH, namely the
projectivization of the cone of all positive semidefiniterin@ian n x n-matrices, Satake defines the
compactification of S associated wijthas the closure of S iH.

In this section and the next one, we present an analogousrectien for Bruhat-Tits buildings
from two different viewpoints. Let G be a semisimple conedagroup over a discretely valued non-
Archimedean fielk. A faithful and absolutely irreducible linear represeiatiato : G — GLy of G in
some finite dimensiondd-vector space V can be used to embed the building of G in tHdibgiof
SLy, hence in any compactification of the latter, and we get a emtification of% (G, k) by taking
the closure. The Berkovich compactification®{SLy,k) corresponding to parabolics stabilizing a
hyperplane has an elementary description as the space of@ems up to scaling on V and will be
the non-Archimedean analogue of the projective cone ofdeimite hermitian matrices.

The difference between this section and the next one liekanconstruction of the map from
A (G, k) to #(SLy, k). Whereas functoriality of buildings is a delicate quesiiogeneral, it is quite
remarkable that Berkovich theory allow us to attach verylyasid in a completely canonical way
amapp : B(G,k) — B(PGLy,Kk) to each absolutely irreducible linear representaparG — GLy.
General results of E. Landvogt on functoriality of buildéngill be used in the next section.
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(4.1) The mapp : #(G,k) — 2Z°(V,k). Let G be a semisimple connect&eyroup and consider a
projective representation : G — PGLy, which we assume to b&bsolutely irreducible We start by
showing that the morphism naturally leads to a continuous andkp-equivariant map : #(G,k) —
2 (V,k), whose formation commutes with scalar extension and whosge lies in the building
PB(PGLy,k).

The two main ingredients in the definition pfare the retractiorr : P(V)2" — 27(V, k), defined
in 3.1, and the following well-known fact. -

Proposition 4.1 — (i) For any field extensioiK /k and any Borel subgroup of G ®kK, there
exists one and only orte-point of P(V) invariant underB.
(i) There exists a unique k-morphigmm Bor(G) — P(V) such that: for any field extensidf/Kk,
the mappx : Bor(G)(K) — P(V)(K) sends a Borel subgroup to the uniqueK-point of P(V)
invariant underB.

Proof. We use the following two results:

1. If the fieldk is algebraically closed, then for each Borel subgroup Bor(G)(k) there exists
one and only one point ift(V)(k) invariant under Bk) [Che0% Exposé 15, Proposition 6 and
Corollaire 1].

2. If the group G is split ovek, then for each Borel subgroup8Bor(G) (k) there exists at least
one point inP(V) (k) invariant under Bk) [Bor93, Proposition 15.2].

(i) Let K/k be a field extension, pick an algebraic closurgdf K and consider the separable
closure K of K in K2. Given a Borel subgroup B in &K, assertion 2 provides a¥point of P(V),
sayX, invariant under the group (B®). Since the K-scheme B is smooth, the subsg is dense
in B, hencex is invariant under BK?) and assertion 1 provides uniqueness of this point.

For anyy € Gal(K®/K), the pointy-x in P(V)(K9) is invariant under the grougB(K®) = B(KS®);
unigueness implieg- x = x and therefore this point belongs to the suli®@t)(K) of P(V)(KS). We
have thus established existence and uniqueness (&) Bnvariant point inP(V)(K). We still have
to check that this point is fixed by B, i.e., that its imagéitV )(S) is invariant under the group(B)
for any K-scheme S.

First step— The functorK-Sch— Sets S+ Stalys)(X) is representable by a closed subgroup,
sayll, of G.

As a direct verification shows, the functor 8eh— Sets S— Stalpg, (s)(X), is represented by
a closed and smooth subgroup & PGLy. LetT1 denote the K-schemegRpg,, G. The second
projection1 — G is a closed immersion arid represents the functor Stgfx) since

N(S) =1{(9.9) € G(S) x Po(S) ; p(9) =g’} = Stakys)(x)
for any K-scheme S.
Second step— The subgrouB of G is contained ifTT.
Since B is a reduced closed subscheme of G, the inclus{?)B= M(K?#) implies the inclusion
B C IN as subgroups of G and we have thus established that the K»poirP(V) is invariant under
B. Note also thaf1 (which may not be smooth) is a generalized parabolic sulpgofuG since it
contains a Borel subgroup.

(i) Pick a finite Galois extensiok' /k splitting G together with a Borel subgroup B ofs& k/, and
let x be the onlyk’-point of P(V) invariant under B. By (i), the map

G(S) = P(V)(S), g—g-X

factors through the canonical projection$3 — G(S)/B(S) for any k'-scheme S. Thanks to the
functorial identification GS)/B(S)-=Bor(G)(S), gB(S) — g(B @k S)g~* [EGA3, Exposé XXVI,
Corollaire 5.2] we thus get a morphism of functgrsBor(G @k k') — P(V ®xk') and define therefore
ak’-morphismp : Bor(G®kk') — P(V ®kk') such that, for ank'-scheme S and any B Bor(G)(S),
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p(B') =g-xif B’ =gBg~1,ge G(S). In particular, for any field extension K, the mapp associates
with a Borel subgroup Bc Bor(G)(K) the only K-point ofP(V) invariant under B
By definition, thek’-morphism

p : Bor(G) ®kk = Bor(GayK) — P(V @kkK) =P(V) kK
commutes with the natural action of Gelk) and thusp descends to k-morphism
p :Bor(G) — P(V)
satisfying the required condition. O

Proposition 4.2 — There exists a largest type t of parabolic subgroup& stich that the morphism
p : Bor(G) — P(V) factors through the canonical projectidBor(G) — Pag(G). The so-obtained

morphismPag(G) — P(V) induces a homeomorphism betwdeay (G)2" and a closed subspace of
P(V)a".

Proof. Assume temporarily that the group G is split, pick a Borelggobp B of G and lek = p(B)
be the onlyk-point of P(V) invariant under B. If we denote byl the stabilizer ok in G, then the
underlying reduced scheni#@®? is the largest parabolic subgroup of G stabiliziglndeed, since
we have proved above thitis a closed subgroup containing B, the reduced schéhweyk?)"®%is a
smooth closed subgroup of& k? containing By k?, hence a parabolic subgroup of#zk?. As G
is split, there exists a unique parabolic subgroup P of Gaioing B such thatM ©xk?)"®4 = Py k2.
This identity implies P= "4, hencel"™d is a parabolic subgroup of G stabilizing Since each
parabolic subgroup Q of G is smooth, Q is a subgroupldf it stabilizes x, and thereford1d
contains any parabolic subgroup of G stabilizingNote also that the type &1 does not depend
on the choice of B by k)-conjugacy of Borel subgroups and equivariance of the map

The morphisnp : G/B — P(V) induces a map
G/M—P(V)
which is a monomorphism in the categoryleéchemes. Since the imagemis a closed subset of

P(V) by properness of B¢6), this map is a closed immersion. Moreover, we have an exgoesee
of k-groups

e——n/ned——g/ned Lo g/n——e

andr /MN"dis a finite and connectedgroup schemeJGA3, Exposeé VIA, 5.6], hence the morphism
p is universally injective, i.e., induces an injection bednek-points for any extension K ¢f Lett
denote the rational type of G defined B#%. Composingp with the morphism @GN — P(V) induced
by p, we see thap factors through the canonical projection of B&) onto Pag(G). The induced
morphismf : Paf(G) — P(V) is universally injective. At the analytic level, the assded mapf2"is
a continuous injection, hence a homeomorphism onto a cleslesket of?(V)2" since PaiG)2" and
P(V)2"are compact.
In general, we pick a finite Galois extensi@fyk spliting G and sef = Gal(k'|k). For any
y € [, there exists a uniquié-rational typet{, such that the morphisifp, = p ®y y factors through
Pa, (G ®«k k). The family {t} }cr is a Galois orbit, hence defines a tyipef parabolic subgroups of
G, and the morphisrp factors through the canonical projection of B8) onto Pay(G) by Galois
descent. O
The above construction associates a well-defined ratigpal of parabolic subgroups of G with
the representatiop.
Definition 4.3 — Let p be an absolutely irreducible projective representati®énr— PGLy. Its co-
typet(p) is the largest rational type t o& such that the canonical morphism: Bor(G) — P(V)
factors through the projection @or(G) ontoPag(G).
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Remark 4.4 — This definition is obviously related to the theory of thghest weight: if B is a
Borel subgroup of G, then thepoint p(B) of P(V) is a hyperplane of V invariant under B, hence
a line in V" invariant under B in the contragredient representafioriThe corresponding character
of B is the highest weight gb with respect to B. This observation is the reason why we chtced

the cotypeof the representatiop; thetypeof p should be defined as the cotype of the contragredient
representation, i.e., the type of the largest paraboligsup stabilizing a highest weight line in V.

Composing the maps

B(G,K) —2~ Bor(G)™ —L = P(V)a — T 27(V,K),

we obtain a natural map
p:#B(G,k) — Z(V,K),

canonically associated with the homomorphismG — PGLy. Since all these maps are continuous
and equivariant, so 'E

(4.2) The main properties gb are easily established. We first consider compatibilityhveitalar
extension. B

Proposition 4.5 — For any discretely valued non-Archimedean figlaxtending Kk, the natural di-
agram

B(G,K) —Z= 2°(V,K)

| T

B(GK) —= 2 (VK

is commutative.

The proof of this proposition relies on the following lemmé&e recall that, ifx is a peaked point
of ak-analytic space X and if Kk is a non-Archimedean extension, theg(x) denotes the canonical
lift of x to X&kK (see Definitior[ 3]7).

Lemma 4.6 — For any rational type t ofs and any point x in; (G, k), the pointd;(x) of Pag(G)a"
is peaked. Moreover, given a non-Archimedean extenjdq the pointoi (9;(x)) of Pag(G)2"&@K
is the image of x under the map

S : B(G,K) — Pag(G @y K)2" = Pag(G)2"2kK.

Proof. Let us first consider a finite Galois extensikiik splitting G and consider a poin¢ in
%:(G,K). By Proposition 1.13, the poinf (x) is contained in some big ce®® of Paf(G ®kk).
Choosing an isomorphisiid,w —U, for each rootnr of G @k k' with respect to a maximal split torus
T containing S k' leads to an isomorphisty, =Q @i k'. Then the point;(X') corresponds to a
seminorm on the algebid&1, ..., &) of the form

n
> g’ — maxay| rlci"i,
v v i=

wherecy,...,c, are non-negative real numbers, not all equal to zero (wighctimvention 6= 1).
Such a seminorm defines a peaked poirmi'r"i‘” [Ber9q, Sect. 5.2] and the poir (X) is therefore
peaked.

In general, pick a point in %, (G, k) and letx, denote its image i3 (G, k'), wherek' /k is a finite
Galois extension splitting G. We consider the completetiuesfield.#”(9:(x)) of J:(x). The point
9t (%) induces a norm on thi€-Banach algebra#’(J;(x)) @k k' with respect to which the descent
datum is an isometry (note tha#’(J;(x)) @k K’ is finite extension ok’). Since the poini; (x¢ ) is
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peaked, this norm is universally multiplicative. BRTWO0Y, Lemma A.10], it follows that the norm
induced ons# (5 (x)) is also universally multiplicative, hence the pofh(x) is peaked.

In order to prove the second assertion, consider a point %;(G,k) and let K/k be a non-
Archimedean extension. Since the pohtx) is peaked, the Banach norm on the K-Banach algebra
A (9 (X)) @K coming from the absolute value o (8;(x)) is multiplicative. On the other hand, the
point 9;(xk ) also defines a multiplicative norm on this K-Banach algefveo such norms necessar-
ily coincide, hencegk (9:(X)) = 9 (X« ). O
Proof of Proposition 4.5Let K be a discretely valued non-Archimedean field extendinDenoting
byt the cotype of the representatipnthe morphisnp : Bor(G) — P(V) factors through the canon-
ical projection BofG) — Pag(G) and leads to a homeomorphism between (3" and a closed
subset of?(V)a" (Proposition{ 4]2). Pick a pointin %(G, k). The pointp(5(x)) of P(V)2"is peaked
sinceZ (pdi(x)) = (9 (x)) andd;(x) is a peaked point of P4G)2" (Lemma 4.6). Moreover, we
have the identities

0k P35t (X) = P Ok 9t (X) = P It (X).
The conclusion finally follows from Propositioh 3]10: theimts p(x) = Tpd(x) and pk(x) =
TPk 9t (X) = Tok pdt (X) coincide in2"(V,K). O
Proposition 4.7 — The image of the map : #(G,k) — 2°(V,K) is contained in the open stratum
A(PGLy,k) of Z°(V,k).
Proof. Assume that there exists a poiin %(G,k) whose image under the mapis not contained
the open stratun#(PGLy,k) of 2°(V,k). Under this hypothesis, the poiptx) = Tp34(x) lies in

2 (V,k)NP(V/W)a for some non trivial linear subspace W in V, herm, (x) € P(V/W)2". Now
consider the following diagram

Bor(G)a" 2~ p(v)an
Bor(G) —— P(V)

in which the vertical arrows are the maps sending a poafitXa", seen as a multiplicative seminorm
on the algebradk (U) of some open affine subset U of X, to the point of the scheme Xhelefi
by the prime ideal kée) € Spe¢Ox (U)) (where X= Bor(G), or X = P(V)). The pointx (p(x),
respectively) is mapped to the generic point of @r(to the generic point dP(V /W), respectively).
Since the diagram above is commutative, it follows that tleephismp maps the generic point of
Bor(G) to the generic point oP(V /W), hence maps B06) into the strict linear subspadV /W)

of P(V). Hence it would follow thato maps G into the nontrivial parabolic subgroup of RGL
stabilizingP(V /W), thereby contradicting the irreducibility @f. O

(4.3) We now state and prove the main result of this section.

Theorem 4.8 — Let k be a discretely valued non-Archimedean field @mwalsemisimple connected
k-group. We consider a finite-dimensional k-vector spd@nd an absolutely irreducible projective
representatiorp : G — PGLy.
(i) The mapp : #(G,k) — 2(V,K) extends continuously to the compactificatiaf(G,k) —
(i) The induced map is an injection &, (G, k) into 2°(V, k).
(i) If the field k is locally compact, the mapextends to a homeomorphism betw@g@p)(G,k)

and the closure gb(#(G,k)) in 2°(V,K).
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Proof. Sett =t(P).

(i) The morphismp : Bor(G) — P(V) factors through the canonical projection: Bor(G) —
Pag(G) and leads to a homeomorphism between(@gf" and a closed subset BfV)2" (Proposition
B.2). The diagram

B(G,k) —2~ Bor(G)a" 2~ p(v)a T 27°(V k)

Paf(G)2"

is commutative (useHTWOY, section 4.2] for the left-hand side triangle) and henceval us to
write the mapp as the compositiompd;. For any maximal split torus S in G, the restriction @f
to the apartment £S,k) extends continuously to its closufg(S,k) in Pag(G)2". Since the image
of %;(G,k) into Pag(G)3"is the union of these closures when S runs over all maximél tepi of
G, the mapsp extends toZ; (G, k). This extension is continuous, for it is(§-equivariant and its
restriction toA¢(S,K) is continuous.

(ii) Let us now prove that the mag (G,k) — 27 (V,k) extendingp, for which we keep the
notation p, is injective. The fact that compatibility gb with scalar extension is proved only for
discretely valued non-Archimedean extensionk iof Propositior]{ 4]5 is a slight difficulty.

Given two pointsx,y € %;(G,k) with p(x) = p(y), we will show that G(k?) = Gy (k?), where
Gx = Stall(x) and G = Stak}(y). Since the fielk is discretely valued, it follows from its description
as a disjoint union of buildings (cf. Theorgm]1.4) that thenpactified building%; (G, k) carries a
(poly-)simplicial decomposition and, by application ofuBat-Tits theory to each stratum, the fixed-
point set of Stalg(x)(k) is precisely the facet of; (G, k) whose interior contains the poirt Now,
since two distinct points of4; (G, k) belong to disjoint facets of4; (G, k') for a large enough finite
extensiork’ /k, the equality G(k?) = Gy(k?) impliesx=y.

We pick a point in 7 (G, ) and set G = p~* Stalfq, <g<x>>)red. This is an analytic sub-
group of G", and
Gpx (K) ={g € G(K); p(g)p(x) = p(x)}
for any non-Archimedean extensioryK Given any finite extensiok /k, it follows from Proposition
B.5 that G4 (K) contains G(K'). We have therefore k%) C G,y (k?), and we will now prove

that equality holds. Notice that, if the poixris rational (i.e., if it becomes a vertex over some finite
extension ok), then the inclusion @k?) C Gy (k?) implies G, C Gy by density.

Notation— The pointx belongs to a stratum S. Let-P Stalis(S) denote the correspondirtg
relevant parabolic subgroup of G and letRR;(P) denote the largest connected, smooth and normal
subgroup of G acting trivially on Ogd). Similarly, the poinfo(x) belongs to a stratutb of 2" (V,K);
we sefll = Stalpgy, (£) and we let B(IT) denote the largest connected, smooth and normal subgroup
of N acting trivially onZ. Up to replacingk by a finite extension, we may assume that the reduced
subschemes’P- p~1(M)™®d and R = p~1(R5(IN))™? are smooth subgroups of G. Note thét R
connected and invariant in.P

First step— The group G(k) is Zariski-dense in P (Theorefn_1112) apdmaps Gx (k) into
M(k). Since P is reduced, the inclusion(®) C G, (k) implies thatp maps P intd1 and therefore
P = p~1(N)"®dis a parabolic subgroup of G coﬁtaining P.

This parabolic subgroup’Blefines a stratum’3$n %; (G, k), the only one it stabilizes. We have
Sc 9 since PC P, and S= S'if and only if P= P’ for P ist-relevant. In order to establish the last

identity, we let R= R;(P') denote the largest smooth connected and normal subgroupactiRg
trivially on Osg(P').
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Second step— We now prove that the parabolic subgroups P ancbicide.

Since P = p~1(N)", the morphismp maps the closed subscheme QB9 of Pag(G) to the
closed subscheme Qg€1) of P(V). By constructionp is universally injective (i.e., purely insepa-
rable), hence the induced map @&¢)(K) — Osg(MM)(K) is injective for any extension K df. It
follows that any elemery of R”(K) acts trivially on OsgP')(K), which implies that the action of' R
on the reduced scheme Qg%) is itself trivial. As the subgroup'Ris smooth, connected and normal
in P, we deduce that Ris contained in Rby maximality of the latter. On the other hand®Ris
trivially contained in R", hence in G ), since any element acting trivially orf fixes S pointwise.

We consider now the quotient group=HP'/R’, which is semisimple and satisfie§S #(H, k).
Thanks to the inclusion ‘Rc R/, this group is also a quotient of f/R”. Since P= p~1(Mn)"®d and
R’ = p~1(Rs(IN))™, we get a canonical morphism

p: P/R'——p=}M)/p~*(Rs(M))——T =M/Rs(M)

which is finite. By construction, we have'® C G, C P and G, /R"*" = p~ (I p(x))" hence
Gp(x/R"*"is bounded inP'/R")*" for pis finite. It follows that G, /R"*" is a bounded in P

Since G(k?) C Gy (k?), the discussion above shows that the stabiliggy/R’) (k?) of xin H(k?)
is bounded. By Remark T]11, this amounts to saying tha¢longs to the open stratum &f=
% (H,k), hence S= S and P=P.

Third step— We have just proved that the subgroup(k®) of G(k?) is contained in the parabolic
subgroup P and has bounded image in the quotient groag#R. The inclusion G(k?) C Gpx (K
implies G(k?) = G,y (k?) since(Gx/R?")(k?) = Gx(k?)/R(k?) is a maximal bounded subgroup of
H(Kk?). -

(iii) If the field k is locally compact, the continuous extension @t %(G,k) — 2°(V,K) to
@t(f,)(G, k) is continuous injection between two locally compact spakesce is a homeomorphism
on its image. 0
(4.3) We end this section by establishing a natural and expectgzepy ofp.

Proposition 4.9 — For any maximal split toru$ of G, there exists a maximal split tordsof PGLy,
containingp(S) and such thap mapsA (S k) into A(T, k).

Proof. For any finite extensioi’ /k, we normalize the metrics so that the canonical embeddings
PB(G,k) — B(G,K) and#(PGLy,k) — B(PGLy,kK) are isometric.

Given a maximal split torus S of G, our first goal is to find anrapant A of Z(PGLy,k) con-
taining the image of AS k).

Let T be a maximal split torus of PGLcontainingp(S) and letx be a point in AS k). For any
se€ S(k), we havep(s-x) = p(s) - p(x) andp(s) - A(T,k) = A(T,k), hence

dist(B(s-x),A(T,k)) - dist(B(x),A(T,k)> .

More generally, we have

dist(p(s-X), A(T.K) ) = dist(p(x),A(T,K))

for any finite extensiol’ /k and anys € S(k'). Since the points of AS k) belonging to the orbit ok
under $K') for some finite extensiok’ /k are dense (in AS,k)), it follows that dist(B(z),A(T, k)>

is independent of € A(S,k). Now, the existence of a maximal split torus df PGL, such that
p(S) C T"andp(x) € A(T',k), hence such thai(A(S k)) C A(T,k), follows immediately from the
next two facts:

1. the set of distances pf(x) to apartments i#(PGLy,k) is discrete;
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2. given a maximal split torus T of PGLsuch thatp(S) C T andp(x) ¢ A(T,k), there exists a
maximal split torus Tof PGLy satisfyingp(S) ¢ T’ and

dist (B(x),A(T’,k)> < dist(g(x),A(T,k)) .

The first assertion follows easily from the (poly-)simpdicstructure on(PGLy, k), hence from
the fact that the field is discretely valued. Let us then prove the second assertion

For any pointz € A(S,k), let p(z) denote the unique point of (A, k) satisfying
dist (B(z), p(z)) = dist (B(z),A(T, k))

and observe that the image of the map
p:A(S k) —A(T.k), z— p(2)

is an affine subspace under the imagé\@) in A(T).

We now use the (poly-)simplicial structure ofRK). Suppose that there exists a pairt A (S, k)
such that pf) belongs to the interior of an alcowe Any path in#2(PGLy,k) from p(z) to a point
lying outside AT, k) contains an initial segmenp(z),Z] with Z € dc and[p(z),Z[C c. Applied to
the geodesic patfp(z),p(2)], this observation leads to a contradiction if ((igi(z),A(T,k)> >0,
since then

dist(g(z),A(T,k)) = dist(g(z), p(z)) < dist(g(z),z’) < dist(g(z),A(T,k)) .

Therefore, since(x) ¢ A(T,k), the affine subspace(A(S,k)) of A(T,k) is contained in some root
hyperplane i, = {a =r}, wherea € X*(T) is a root whose restriction to S is triviadys = 1, and
r € |k<|. By folding A(T,k) along H, ,, we will obtain a new apartment o8(PGLy,k) which is
closer top(A(S,k)).

LetXo = p(X), %1, ...,% = p(x) denote the successive vertices of the simplicial decortiposif
[0(x), p(x)] induced by the (poly-)simplicial structure &#(PGLy,k). There exists an elementof

a(K)r satisfying the following two conditions:

(@) A(T,k)nu-A(T,k) is the half-apartmenfa <r};

(b) u-A(T,k) = A(uTu™%,k) contains[X,_1,%n].
Since ajs = 1, we havesus* = u for any s € S(k) and thusp(S(K')) stabilizes the apartment
A(uTu 1K) for any finite extensionk’/k. Setting N= Normpg, (uTu™!), the stabilizer of
A(uTu 1K) in PGLy(K) is the group NK'), hencep(S(k')) ¢ N(K') for any finite extensiork’/k
and thusp(S) C N since both S and N are reduck@roups. By connectedness, it follows that S is
contained in N = uTu™L.

We have

dist(g(x),A(uTu‘l,k)) < dist(p(X),Xq-1) = dist(p(X),%n) — dist(Xh—1,%n) < dist(g(x),A(T,k))

sincex,_1 # Xn. This concludes the proof of assertion 2 above.

We have just proved that there exists a maximal split torusfTPGLy such thatp(S) Cc T
andp(A(S,k)) C A(T',k). Thanks to compatibility op with finite field extensions, the inclusion
p(A(S,k)) c A(T',k) holds more generally after any such extension. As befofellaws thatp(S)

is contained in T= Normpgy, (T")° and this completes the proof. a

Remark 4.10 — Given two semisimple connectddgroups G, H and a homomorphisin: G —

H, the above proof applies more generally to any continuoas@(k)-equivariant map#(G, k) —

2 (H,k) which is compatible with finite extensions kf the apartment of any maximal split torus S
of G is mapped to the apartment of a maximal split torus of Haiaing f (S).
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Functoriality of buildings with respect to group homomagphs has been studied by Landvogt in
[Can0Q]. Given a complete discretely valued fidtdvith perfect residue field and two semisimple
connectedk-groups G and H, Landvogt proved that each homomorpHisi® — H gives rise to a
non-empty set of (k)-equivariant and continuous maps: %4(G,k) — %#(H,k). By construction,
each such map i®ral, i.e., maps the apartment of a maximal split torus S of G t@afgertment of a
maximal split torus of H containing(S). In the special case where-HPGLy and f is an absolutely
irreducible representation, the mépntroduced in this section is an instance of Landvogt's maps

The canonical nature of the mdpraises two obvious questions: is the set of Landvogt's maps
reduced to an element whefnis an absolutely irreducible representation? If no, ise¢hemway to
single outf without using Berkovich geometry?

5. SATAKE COMPACTIFICATIONS VIA LANDVOGT'S FUNCTORIALITY

In this last section, we present another approach to Satkgactifications using Landvogt's
results on functoriality of Bruhat-Tits buildings. As bedo G is a connected, semisimple group over
a non-Archimedean local fiekl We fix a faithful, absolutely irreducible representatmnG — GLy
for some finite-dimensionak-vector space V. Using results frorhgn0q], the representatiom
defines a continuous, (®)-equivariant embedding. : #(G,k) — #(SLy,k).

As in the previous section, we want to use one fixed compaatiiic of #(SLy,k) on the right-
hand side and take the closure of the image&#o6, k) to retrieve (G, k),,. For functoriality reasons,
the natural candidate for this compactificationZ@fSLy, k) is Z(SLy, K)iq for the identical represen-
tation id : Sly — GLy. According to Theorerh 4.1%(SLy,K)ia = Zr(SLv,k), wherert s the type
of parabolics stabilizing a line in V. This space was studief@Ver01] and is canonically isomorphic
to Z5(SLvv,k), where V' denotes the dual vector space. It can be identified with thenuof all
Bruhat-Tits buildings#(SLy,k), where V runs through the linear subspaces of V. Its points can
be described as seminorms oh Mp to scaling and vertices correspond bijectively to the bty
classes of fre&°-submodules (of arbitrary rank) in V.

In the following, we letr denote the uniquk-rational type such tha®(G, k), = %:(G,k), whose
existence was established in section 2. It will eventualiy out that we can replaceby the (non
necessarilk-rational) typet(p) naturally associated with.

(5.1) We recall some results ofEfn0(], applied to the representatigm: G — GLy. Since G is
semisimple, it is equal to its derived group. Hemceomes from a representatign: G — SLy, for
which we use the same notation.

Let S be a maximal split torus in G with normalizer N, and |€64) denote the corresponding
apartment inZ(G, k). Choose a special vertexin A(S,k). By [Lan0(], there exists a maximal split
torus T in Sly containingp(S), and there exists a poiot in the apartment AT, k) of T such that the
following properties hold:

1. There is a unique affine mapA (S, k) — A(T,k) such thai(o) = 0. Its linear part is induced
byp:S—T.

2. The mag satisfieso(Px) C Pi’(x) for all x € A(S,k), where R denotes the stabilizer of the point
X with respect to the k)-action on#(G,k), and Fi’(x) denotes the stabilizer of the poirfk)
with respect to the Sf(k)-action on%(SLy, k).

3. The mapp, : A(S,k) — A(T,k) — Z(SLy,k) defined by composing with the natural em-
bedding of the apartment (&,k) in the building #(SLy,k) is N(k)-equivariant, i.e., for all
x € A(S,k) andn € N(k) we havep, (nx) = p(n)p.(X).
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These properties imply that, : A(S,k) — #(SLy, k) can be continued to a map : £(G,k) —
% (SLv,k), which is continuous and ®)-equivariant. By[[an0(, 2.2.9],p; is injective and isomet-
rical, if the metric on#(G, k) is normalized correctly.

We want to show thap, can be extended to a map : B(G,k), = %:(G,k) — %n(SLy,K).
Besides, we prove that this map of compactified buildingstifles %+ (G,k) as a topological ¢k)-
space with the closure @f.(%(G,K)) in Zr(SLy,K).

(5.2) Let us first look at compactified apartmentsZ (G, k) and Z(SLy,k).
Let (ep,...,€4) be a basis of V consisting of eigenvectors of T and denotgoby. ., x4 the corre-
sponding characters of T. The map

A(T) = (R-0)®™, ur ((U, Xi))o<i<d

identifies/\(T) with the subset ofR-o)%*? consisting of vectorsro, ...,rq) satisfyingrg...rq = 1.
The fan on\(T) defining the compactificatioA (T,k) of A(T,k) consists of all faces of the cones
Co,...,Cq, Where

Ci={(ro,...,rq) € (]R{>o)d+1; ro-...-rq=1 andr; >r;, forallj}.

The weights of the representatiprwith respect to the torus S are the imageg®f . ., xq under the
projection X (T) — X*(S) deduced from the morphism: S — T, i.e., the restrictions oXo, ..., Xd
to S. Settingh; = (xi)|s for all i € {0,...,d} and identifying as abovA(T) = Homap (X*(T),R>0)
with a subset of R-o)%+1, the dual map

1 A(S) = Homap (X*(S), R=0) — (Rs0)t?
is simply defined by

U= ((Ai,U))ocicq -
This is an embedding since the representagias faithful.

Lemma 5.1 — The preimage undarof the fanZ generated by Cy,...,Cq} is the fanZ; onA(S).
Proof. By definition,
17HC) = {ue A(S); (Ai,u) = (Aj,u), forallj} ={uecA(S); (A —Aj,u) =1, forallj}.

Given a basigé of (G, S) c X*(S), we denote by £ the corresponding minimal parabolic subgroup
of G containing S and byio(A) the highesk-weight of p with respect to B; we also recall that the
Weyl cone€(P5) is defined by the conditiong > 1 for all o € A. If Ag(A) = Aj, thenAi — A is a
linear combination with non-negative coefficients of eletseofA and thus ~(C;) containse (P5).
Therefore, it follows from the proof of Lemma 2.5 that!(C;) contains the cone

(P = U er)
AO(A’)A= Ao(B)
if A; is the highest weight gb with respect to .

The inclusion G(P5) c 1~1(Cj) is in fact an equality. If it were not, therm1(C;) would meet
the interior of some Weyl con&(P4) with Ag(4') # Ai. SettingAo(4') = A;, it would follow that
1~%(CiNC;j) contains a poink of ¢(P4)°. Such a situation cannot happen: on the one hapl,c
CiNC; implies Ai(x) = Aj(x); on the other hand}; — A; is a non-zero linear combination with non-
negative coefficients of elementsaf henceA; — A; > 1 on&(P4)° and thush(x) > Ai(x).

We have therefore=1(C;) = C;(P5) if A is the highesk-weight of p with respect to B, whereas
171(Cp) is empty if A; doesn't occur among the highdstveights ofp. We have checked that the
fans.#; andi ~1(.#) have the same cones of maximal dimension; since each fdce istersection
of suitable cones of maximal dimension, it follows th@f = 1 ~1(.%). O
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By the preceding lemma, the affine mapA(S k) — A(T,k) can be extended to a continuous
injective map
i KT(Sv k) I KT((Tv k)
which is a homeomorphism @ (S, k) onto the closure af(A(S,k)) in Ax(T,k).

(5.3) As recalled in Section 2%:(G,k) = %(G,k), can be described as the quotient ofkx
A:(S,k) by the following equivalence relation:

(9,x) ~ (h,y) ifand only if there exists an element N(k)
such thainx=y andg~thne P.

Here R is defined as P= N(k)xUyx, where NK)y is the subgroup of Kk) fixing x, and where
is generated by all filtration steps;,l(k),k,ga(x) in the root group W (Kk), with

a(x) =sup{ceR-g:xe{a(-—0) >c}.

Similarly, Zx(SLy,k) can be described as the quotient ofyBk) x Ax(T,k) with respect to the
analogous equivalence relation involving the stabilizeugs B for x € K,T(_T, K).

Composing : A;(S, k) — Ax(T,k) with the embedding oA (T,k) in %,(SLy,k), we obtain a
continuous and therefore(k)-equivariant map, : A (S k) — Zn(SLy,K).

Now we want to continue this map to the compactified buildwig(G, k).

Lemma 5.2 — For every xc A(S k) we havep(Py) C Pi’(x), wherePy denotes the stabilizer of x in
G(k) and Pi’(x> denotes the stabilizer ofx) in SLy (k).

Proof. If x € A(S,k), the claim holds by (5.1), property 2. In general, we haye=RJ(k)xN(Kk)x
where NK)y is the stabilizer ofk in N(k). Sincep, : A¢(S,k) — %n(SLy,k) is N(k)-equivariant,
we findp(N(k)x) C Fyi(x). The group UK)y is generated by all W(K)x = Uq (K) _joga(x) for a € ored,
Hence it suffices to show(Uq (k)x) C P, for all a € @',

If 0 < a(x) < o, then there exists a sequeneg) of points in A(S,k) converging towards and
such thata (x) = a(x,) for all n, hence U (k)x = U4 (K)x, for all n. By (5.1), property 2, it follows
that p(Uq (K)x) C p(Px,) is contained in F(’Xn). Sincei(x,) converges towardgx) and Sly (k) acts
continuously onZ(SLy, k), this impliesp(Uq (K)x) C Pi’(x>.

If a(x) =0, then Y (k)x = {1} and there is nothing to prove.

It remains to address the case whar) = «, hence U (k)x = Uq (k). There exists a sequence
(xn) of points in A(S,k) converging tax and such that linx(x,) = o (observe thak belongs to the
closure of each half-spader (- — 0) > c}, with ¢ € R>p). Any elementu of U4 (K) lies in one of the

filtration steps Y (k),; since this filtration is decreasing belongs to Y (k)x,, hence to the stabilizer
Px,, if nis big enough. By Landvogt’s results, this implies tjpgt)) is contained in ﬁ’xn) for n big

enough. Since Si(k) acts continuously om8,(SLy,k), it follows thatp(u) is indeed contained in
Pi’(x) and the proof is complete. -

It follows immediately from the lemma above that the nat@ék)-equivariant map
G(k) X KT(S7 k) - QU(SLV7 k)? (97 X) = p(g) Py (X)

factors through the equivalence relation definidg(G,k) and thus induces a (®)-equivariant and
continuous map

extending Landvogt’s map.,.

Theorem 5.3 — The mapp, : %(G,k) — %n(SLy,K) is a G(k)-equivariant homeomorphism of
%:(G, k) onto the closure ob.(%(G,K)) in Z(SLy,k).
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Proof. The image of the compact spagg; (G,k) underp, is closed, hence it contains the closure
of p.(#(G,k)). On the other hand, any poigtin p.(%(G,k),) is of the formz= p(g) - p,.(x) for
someg € G and some € A (S k). If (x,) is a sequence of points in(&,k) converging towards,
then(p(9) - p..(Xn)) is a sequence of points p.(A(G,k)) converging towardg, hencezis contained
in the closure of,(%(G,k)). Injectivity follows from the fact that any two points o (G,k) are
contained in one compactified apartment by Thedren] 1.13 (i).

Therefore, the map, is a continuous bijection betwee#i; (G, k) and the closure gb.(#(G,k))

in Z7(SLv,k). Since both spaces are compact, this is a homeomorphism. O

(5.4) We complete this work by identifying tHerational typet appearing in Theorenis .1 ahd]5.3.
Proposition 5.4 — The typer is the unique k-rational type defining the Berkovich comifiaation

Py (p)(G,K). Equivalently, we have
@(Gv k)P = @t(p) (Gv k)

and any Landvogt map. : #(G,k) — #(SLy,k) extends to &(k)-equivariant homeomorphism
betweenZ ,,)(G, k) and a closed subspace @f(SLy k).

Proof. Applying Theorem[ 4]8 to the contragredient represemiafipthe Berkovich magp pro-
vides us with a @&)-homeomorphism betwee#; (G, k) and a closed subspace@f;(SLyv, k) =

Pr(SLy,K). Since this map is toral (Propositipn ]4.9), it satisfies édmas 1 to 3 of (5.1) and we de-
duce from Theorerfi 5.3 that the compactificatiofis,, (G, k) and%: (G, k) are Gk)-homeomorphic.
Thus, T is the uniquek-rational type defining the same Berkovich compactificaisrthe type(p)
naturally attached to the absolutely irreducible repregam p (see RTW09, Appendix CJ). O
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