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Abstract. Let A be an annular type domain in R2. Let Aδ be a perforated

domain obtained by punching periodic holes of size δ in A; here, δ is sufficiently
small. Suppose that J is the class of complex-valued maps in Aδ , of modulus
1 on ∂Aδ and of degrees 1 on the components of ∂A, respectively 0 on the
boundaries of the holes.
We consider the existence of a minimizer of the Ginzburg-Landau energy

Eλ(u) =
1

2

Z

Aδ

(|∇u|2 +
λ

2
(1 − |u|2)2)

among all maps in u ∈ J .
It turns out that, under appropriate assumptions on λ = λ(δ), existence is
governed by the asymptotic behavior of the H1-capacity of Aδ .

When the limit of the capacities is > π, we show that minimizers exist and
that they are, when δ → 0, equivalent to minimizers of the same problem in
the subclass of J formed by the S1-valued maps. This result parallels the

one obtained, for a fixed domain, in [3], and reduces homogenization of the
Ginzburg-Landau functional to the one of harmonic maps, already known from

[2].
When the limit is < π, we prove that, for small δ, the minimum is not attained,
and that minimizing sequences develop vortices. In the case of a fixed domain,

this was proved in [1].

1. Introduction

Let Ωo and Ωi be two smooth bounded simply connected domains in R
2 such

that Ω̄i ⊂ Ωo. Consider the annular type domain A = Ωo \ Ω̄i. Set Γo = ∂Ωo,
Γi = ∂Ωi, so that ∂A = Γo ∪ Γi.

We define a perforated domain Aδ obtained by “punching” holes of size δ in A.
To this end we first introduce a unit periodicity cell V . Let a and b be two linearly
independent vectors in R

2 and set P = {sa + tb; s, t ∈ (0, 1)}. Let U be a smooth
simply connected domain such that Ū ⊂ P . The unit cell is defined as V = P \ Ū .
Set Γ = ∂U .

1991 Mathematics Subject Classification. Primary: 35B27; Secondary: 55M25.
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vortices.
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Consider, for a small number δ > 0, a point xδ ∈ R
2 and define Zδ = {m ∈

Z
2 ; δm+ xδ + δP ⊂ A}. Then the perforated domain is defined as follows:

(1) Aδ = A \ ∪m∈Zδ
(δm+ xδ + δŪ),

with the boundary

(2) ∂Aδ = Γo ∪ Γi ∪ ∪m∈Zδ
(δm+ xδ + δΓ).

Our goal is to study asymptotic behavior as δ → 0 and λ → ∞ of solutions
(minimizers) of the following minimization problem:

(3) mδ := Inf

{

Eλ(u) =
1

2

∫

Aδ

|∇u|2 +
λ

4

∫

Aδ

(1 − |u|2)2 ; u ∈ J
}

.

Here, λ = λ(δ) → ∞ is a Ginzburg-Landau (GL) parameter (the exact relation
between λ and δ will be specified later), Eλ is a GL energy functional. The class J
of testing maps is

(4)

J
{

u ∈ H1(Aδ ; C); tr u ∈ H1/2(∂Aδ ; S
1), deg(u,Γo)

= deg(u,Γi) = 1, deg(u, δm+ xδ + δΓ) = 0, for any m ∈ Zδ

}.

The degrees here are computed with respect to the direct orientation of the con-
nected components of ∂Aδ.

To begin with, we note that the definition of J is meaningful. Indeed, if γ is
a simple closed curve and u ∈ H1/2(γ ; S

1), then u has a degree on γ (since
u ∈ VMO(γ ; S

1) and such maps have a degree [10]). If u is a minimizer of (3)-
(4), then actually u ∈ C∞(Āδ) [4], thus for a minimizer, the degree is the classical
winding number.

Recall that, for fixed δ and large λ, the minimizers of the problem (3)-(4) ex-
ist (subcritical domain) or may not exist (supercritical domain) depending on the
H1-capacity of the domain Aδ [3, 1]. It turns out that asymptotic behavior of
minimizers of (3)-(4) for subcritical domains can be understood by establishing
asymptotic equivalence (see Theorem 1 below) between these minimizers and the
minimizers of the following problem

(5)

Mδ := Inf

{

1

2

∫

A

|∇u|2; u ∈ H1(Aδ ; S1), deg(u,Γo) = deg(u,Γi) = 1,

deg(u, δm+ xδ + δΓ) = 0, for any m ∈ Zδ

}

.

The infimum is always attained in (5) [6], Chapter 1. Note that while the variational
problem (3)-(4) is nonlinear, the latter problem (5) has an underlying linear problem
for the phase of the corresponding harmonic maps and therefore is much easier
to analyze both asymptotically and numerically. Indeed homogenization for the
problem (5) as δ → 0 has been established in [2], and therefore the above mentioned
asymptotic equivalence provides the homogenization result for (3)-(4).

While the main effort in this work is on establishing the asymptotic equivalence
in the subcritical domains, we also find the asymptotic behavior of the minimizing
sequences for supercritical domains Theorems 2-3.
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In order to state our main result on asymptotic equivalence, we begin with the
following

Proposition 1. There exists lim
δ→0

Mδ = M ∈ (0,+∞).

Proof. Recall the following ”torsion” problem:

(6)

Nδ = Inf

{

1

2

∫

A

|∇φ|2; φ ∈ H1(Aδ ; R), φ|Γo
= 1, φ|Γi

= 0,

φ|δm+xδ+δΓ = unknown constant, for any m ∈ Zδ

}

.

Let Nδ be the infimum (actually minimum) in (6). Recall [13] that there exists

lim
δ→0

Nδ = N ∈ (0,+∞).

Problems (5) and (6) are related as follows: we have Mδ =
1

2

∫

A

|∇Φ|2, where Φ

solves

(7)



















































∆Φ = 0, in Aδ

Φ = 0 on Γi

Φ = unknown constant on Γo

Φ = unknown constant on each δm+ xδ + δΓ
∫

Γo

∂Φ

∂ν
= 2π

∫

δm+xδ+δΓ

∂Φ

∂ν
= 0, for any m ∈ Zδ

(see. e.g, Chapter 1 in [6], where it is shown that, if u is a minimizer of (5) and
we write locally u = exp(iψ), with ψ smooth, then ψ is harmonic. The harmonic
conjugate Φ of ψ, a priori only locally defined, turns out to be globally defined and
satisfies (7)). On the other hand, if φ is a minimizer of (6), then it is easy to see
that φ satisfies:



































∆φ = 0, in Aδ

φ = 0 on Γi

φ = 1 on Γo

φ = unknown constant on each δm+ xδ + δΓ
∫

δm+xδ+δΓ

∂φ

∂ν
= 0, for any m ∈ Zδ

.(8)

Thus φ = CΦ for some constant C. Since

Nδ =
1

2

∫

Aδ

|∇φ|2 =
1

2

∫

Γo

∂φ

∂ν
=

1

2

∫

Γo

C
∂Φ

∂ν
=

1

2
C2π,

we find that Φ =
π

Nδ
φ. Thus Mδ =

π2

Nδ
, and the conclusion of the proposition

follows. �

Remark 1. Nδ is the (generalized)H1-capacity of Aδ. Therefore, N may be viewed
as a homogenized H1-capacity.
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We now show that the existence of minimizers of (3) is governed by the value of
M (thus by the value of N).

Proposition 2. Assume that M < 2π. Then, for sufficiently small δ > 0, the
infimum mδ in (3) is attained.

Proof. For small δ, we have Mδ < 2π. Since test functions for (5) are also test
functions for (3), we find that mδ ≤Mδ < 2π. It remains to recall that Proposition
5 in [3] states that if mδ < 2π, then mδ is attained. �

Theorem 1. Assume that M < 2π and that

(H1) lim
δ→0

λ(δ)δ2 = ∞.

Then:
a) for sufficiently small δ > 0, minimizers uδ of (3) are unique up to a rotation,
i.e., if u′δ and uδ are minimizers, then u′δ = αuδ for some α ∈ S

1.
b) if uδ is a minimizer of (5)(a harmonic map), then there is some αδ ∈ S

1 such
that, as δ → 0, uδ − αδu

δ → 0 both in H1(Aδ) and uniformly in Āδ.
In particular, |uδ| → 1 uniformly in Āδ, so that uδ is vortexless for sufficiently
small δ.

Corollary 1. The map ᾱδuδ/u
δ, initially defined in the perforated domain Aδ, has

an extension wδ defined in A such that wδ → 1 in H1(A).

Remark 2. Clearly, if u minimizes either (3) or (5), then so does αu, ∀ α ∈ S
1, and

therefore one can not hope to ”get rid” of the constant αδ in the above statements.

Remark 3. With more standard notations, we have λ = κ2 = 1/ε2, where κ is the
usual GL parameter and ε = 1/κ behaves like a length (penetration depth). With
these units, (H1) becomes ε ≪ δ, that is the penetration length is much smaller
then the size of the periodicity cells.

Concerning the case M > 2π, we have the following result, where, presumably
only for technical reasons, we had to replace the rather natural condition (H1) by
a slightly stronger one.

Theorem 2. Assume that M > 2π and (H2) lim
δ→0

√
λδ/ lnλ = ∞. Then there is

some δ0 such that, for δ < δ0, mδ is not attained.

Remark 4. In terms of ε, assumption (H2) reads ε| ln ε| ≪ δ. Thus, (H2) is
satisfied if, e. g., ε ≤ Cδ1+a for some a > 0.

The next result asserts that, ifM > 2π and δ is sufficiently small, then minimizing
sequences ”develop exactly two vortices, one near Γo, the other one near Γi”. Stated
in this form, the result is not true, since the testing maps are merely H1, and there
is no good notion of zero set in this case. In order to have a rigorous result, we
proceed as in [3]. We first regularize a testing map: given v ∈ J , let u equal v on
∂Aδ and minimize the GL energy with respect to its boundary value. Then u is
smooth in Aδ; thus its zero set is well-defined, unlike the one v. We call u a quasi-
minimizer. A quasi-minimizing sequence is a sequence {un} of quasi-minimizers
such that Eλ(un) → mδ.

Theorem 3. Assume that M > 2π and (H1) lim
δ→0

λδ2 = ∞. Let δ be sufficiently

small and let {un} be a quasi-minimizing sequence. Then, for large n, un has exactly
4
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two zeroes, one ζn, of degree 1 and such that ζn → Γi, the other one ξn, of degree
−1 and such that ξn → Γi.

Here, the degree is the degree of un computed on a small circle around ζn,
respectively ξn.

Remark 5. Unlike the case of a fixed domain [3], we do not know what happens
when M = 2π. The answer seems to depend on whether Mδ converges to M from
above or from below.

A word about the proofs. The only part where periodicity comes into the picture
is Proposition 1, which is needed to define the value M . Otherwise, the proofs could
deal with non periodic holes of size δ, at distance ≥ Cδ from ∂A, of mutual distance
≥ Cδ and of ”uniform geometry” (what this means, it will be clear from Section 2).

2. Proof of Theorem 1 and of Corollary 1

Outline of the proof. The main part consists in proving that |uδ| → 1 uniformly
in Aδ as δ → 0. To this end, we first prove that such convergence holds ”far
away” from ∂Aδ (Step 2); this is an easy consequence of an estimate taken from
[14]. More delicate is convergence ”near” ∂Aδ; this is the core of the proof. In
a slightly different context, a similar situation is considered in [12]. We present
below a different approach (Step 3). Step 1 provides preliminary estimates in Step
3. Once the uniform convergence is known, H1 convergence of uδ/u

δ (modulo S
1)

is straightforward. Better estimates are obtained in Step 4, using an idea from [15].
These estimates are required in Step 5 (uniform convergence of uδ/u

δ). The key
ingredients in this part are the fact that the phase of uδ/u

δ satisfies a jacobian type
equation (idea borrowed from [9]) together with some estimate for such equations

[7]. In Step 6, we prove the fundamental estimate |∇uδ| = o(1/
√
λ); the proof is

obtained via the analysis of a Gagliardo-Nirenberg type estimate obtained in [5].
Once this estimate is obtained, uniqueness of uδ modulo S

1 is well-known (Step 7).

Throughout this section, we assume that the hypotheses of Theorem 1 hold: that
is, M < 2π and lim

δ→0
λδ2 = ∞. In addition, we assume δ sufficiently small, in order

to have existence of uδ.

Step 1. Comparison results for Mδ

With Γ = ∂U , let d(x) denote the signed distance of a point x to Γ (d(x) is positive
outside Γ, negative inside it). Set Γt = {x; d(x) = t}, so that Γ0 = Γ. In what
follows, we suppose that |t| is sufficiently small.

Let Ut be the interior of Γt and let Vt = P\Ūt. Then Ut is simply connected and
it makes sense to consider:
(i) Aδ,t = A \ ∪m∈Zδ

(δm+ xδ + δŪt);

(ii) the minimization problem

(P2t) Mδ,t := inf

{

1

2

∫

Aδ,t

|∇u|2;u ∈ H1(Aδ,t ; S
1),deg(u,Γo)

= deg(u,Γi) = 1,deg(u, δm+ xδ + δΓt) = 0, for any m ∈ Zδ

}

.

Lemma 1. We have |Mδ,t −Mδ| ≤ C|t| for some C independent of t and δ.

5
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Proof. We start by noting thatMδ,t ≤ C for some C independent of δ and t. Indeed,
fix a map u ∈ C∞(Ā; S1) such that deg(u,Γo) = deg(u,Γi) = 1. Then u|Aδ,t

is a
test function for (P2t). Therefore,

Mδ,t ≤
1

2

∫

Aδ,t

|∇u|2 ≤ 1

2

∫

A

|∇u|2 = const.

Returning to the proof, we consider only the case t > 0; the proof of the case
t < 0 is similar.

Let, for x ∈ Γ, ~ν(x) be the inner normal to Γ. If ε > 0 is sufficiently small, then
each y such that |d(y)| ≤ ε may be uniquely written as y = x − d(y)~ν(x) for some
x ∈ Γ. We set, for such a y, ~ν(y) = ~ν(x). Then y 7→ ~ν(y) is smooth. Assume that
|t| < ε/2. Define Φt : Vt → V through the formula

Φt(x) =







x, if d(x) ≥ ε

x+
t(ε− d(x))

ε− t
~ν(x), if t ≤ d(x) < ε

.

Clearly, Φ−1
t is given by

Φ−1
t (x) =







x, if d(x) ≥ ε

x− t(ε− d(x))

ε
~ν(x), if 0 ≤ d(x) < ε

.

It is obvious from these two formulae that Φt has the following properties:
(i) Φt = id near ∂P ;
(ii) Φt is an orientation preserving diffeomorphism of Γt into Γ;
(iii) ‖DΦt − id‖ ≤ Ct, ‖DΦ−1

t − id‖ ≤ Ct, for some C independent of t.
With the help of Φt, we may construct a diffeomorphism Φδ,t of Āδ,t into Āδ by

setting

Φδ,t(x) =







x, if x /∈ ⋃

m∈Zδ
(δm+ xδ + δVt)

δm+ xδ + δΦt(
1

δ
(x− xδ) −m), if x ∈ δm+ xδ + δVt

.

Thus
(i) Φδ,t is a Lipschitz diffeomorphism, with inverse

Φ−1
δ,t (x) =







x, if x /∈ ⋃

m∈Zδ
(δm+ xδ + δV )

δm+ xδ + δΦ−1
t (

1

δ
(x− xδ) −m), if x ∈ δm+ xδ + δV

;

(ii) Φδ,t is an orientation preserving diffeomorphism of δm+xδ+δΓt into δm+xδ+δΓ.
In addition, Φδ,t restricted to Γo ∪ Γi is the identity map.

(iii) ‖DΦδ,t − id‖ ≤ Ct, ‖DΦ−1
δ,t − id‖ ≤ Ct, for some C > 0 independent of t.

If u is a test function for (P2), then u ◦ Φδ,t is a test function for (P2t). Thus

Mδ,t ≤
1

2

∫

Aδ,t

|∇(u ◦ Φδ,t)|2 ≤ 1

2
(1 + Ct)

∫

Aδ

|∇u|2,

so that

Mδ,t ≤ (1 + Ct)Mδ ≤Mδ + C ′t.

Similarly, Mδ ≤Mδ,t + C ′′t. �
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Two-parameter homogenization for GL L. Berlyand & P. Mironescu

We will need below a version of Lemma 1. Set Γεo = {x ∈ A ; dist(x,Γo) = ε},
Γεi = {x ∈ A ; dist(x,Γi) = ε}. Set also Aε = {x ∈ A ; dist (x, ∂A) > ε} and
denote A′

δ,t = A|t|δ ∩Aδ,t. We note that, if |t| is sufficiently small, then we have

∂A′
δ,t = Γ|t|δ

o ∪ Γ
|t|δ
i ∪

⋃

m∈Zδ

(δm+ xδ + δΓt).

Lemma 2. Let

(P2′t) M
′
δ,t := inf

{

1

2

∫

A′

δ,t

|∇u|2;u ∈ H1(A′
δ,t ; S1),deg(u,Γ|t|δ

o )

= deg(u,Γ
|t|δ
i ) = 1,deg(u, δm+ xδ + δΓt) = 0, for any m ∈ Zδ

}

.

Then |M ′
δ,t −Mδ| ≤ C|t| for some C independent of small t and δ.

The proof, very similar to the one of Lemma 1, is left to the reader.

Step 2. For small δ, |uδ| is close to 1 ”far away” from ∂Aδ

We recall the following estimates obtained in [14].

Lemma 3. Let B > 0 be a fixed constant. Then, with constants C = Cℓ,B depending
only on B and on ℓ ∈ N, a solution u of the Ginzburg–Landau equation −∆u =
λu(1 − |u|2) in B(0, R) ⊂ R

2 satisfying |u| ≤ 1 and the energy estimate

1

2

∫

B(0,R)

|∇u|2 +
λ

4

∫

B(0,R)

(1 − |u|2)2 ≤ B

satisfies the inequalities

|Dℓu(0)| ≤ C

Rℓ
,

|Dℓ(1 − |u|2)(0)| ≤ C

λRℓ+2
.

Actually, Lemma 3 was proved in [14] for R = 1; the general case follows by scaling.

Lemma 4. Let t > 0 be sufficiently small and fixed. Let µ ∈ (0, 1). Then, for suf-
ficiently small δ, we have |uδ| ≥ µ in A′

δ,t, provided that the hypotheses of Theorem
1 hold.

Proof. If x ∈ Aδ and R = dist(x, ∂Aδ), then

1

2

∫

B(x,R)

|∇uδ|2 +
λ

4

∫

B(x,R)

(1 − |uδ|2)2 ≤ mδ ≤Mδ ≤ B,

for some B independent of x or δ. In addition, minimizers of (P1) satisfy |uδ| ≤ 1
and the Ginzburg–Landau equation [3]. We are in position to apply Lemma 3,
which yields

1 − |uδ(x)|2 ≤ C

λR2
.

If x ∈ A′
δ,t, then R ≥ tδ. Therefore,

1 − |uδ(x)|2 ≤ C ′

λδ2
.

The conclusion of the lemma follows from assumption (H1). �
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Step 3. For small δ, |uδ| is close to 1 in Aδ

Lemma 5. Let C be a smooth annular domain with outer (inner) boundary γo (γi).
Let u ∈ C1(C̄; C) be such that |u| ≤ 1 in C and µ ≤ |u| ≤ 1 on ∂C. Here, 0 < µ < 1.
Let do = deg(u/|u|, γo), di = deg(u/|u|, γi). Then

1

2

∫

C

|∇u|2 ≥ πµ2|do − di|.

Proof. Set v = f(u), where f(z) =

{

z/|z|, if |z| ≥ µ

z/µ, if |z| < µ
. Then |∇u| ≥ µ|∇v|, |v| =

1 on ∂C, deg(v, γo) = do, deg(v, γi) = di. It suffices to prove that
1

2

∫

C

|∇v|2 ≥

π|do − di|. This follows from

(9)
1

2

∫

C

|∇v|2 ≥

∣

∣

∣

∣

∣

∣

∫

C

Jac v

∣

∣

∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

∣

∣

∫

∂C

v × ∂v

∂τ

∣

∣

∣

∣

∣

∣

= π|do − di|.

We used here the degree formula

deg(v, γ) =
1

2π

∫

γ

v × ∂v

∂τ
,

where γ is positively oriented and v : γ → S
1. For further use, we note that the

equality
∫

C

Jac v = π(deg(v, γo) − deg(v, γi))

(and thus the conclusion of Lemma 5) holds if we merely suppose u ∈ H1; see [4]
for details. �

Lemma 6. For sufficiently small δ and fixed t > 0, we have deg(uδ/|uδ|, Γtδo ) =
deg(uδ/|uδ|,Γtδi ) = 1 and deg(uδ/|uδ|, δm+ xδ + δΓt) = 0, ∀ m ∈ Zδ.
In other words, uδ/|uδ| is a test function for (P2′t).

Proof. In view of Lemma 4, we may assume the |uδ| ≥ µ on ∂A′
δ,t; here, µ ∈ (0, 1) is

to be chosen later. The set Aδ \A′
δ,t is a union of disjoint smooth annular domains:

Aδ \A′
δ,t ={x ∈ A ; 0 < dist(x,Γo) < δt}

∪ {x ∈ A ; 0 < dist(x,Γi) < δt} ∪
⋃

m∈Zδ

(δm+ xδ + δ(Ut \ Ū)).

Applying Lemma 5 to each of these domains, we find that, with v = vδ = uδ/|uδ|,
we have

Mδ ≥ mδ ≥
1

2

∫

Aδ \A′

δ,t

|∇uδ|2 ≥πµ2

(

∑

m∈Zδ

|deg(v, δm+ xδ + δΓt)|

+ |deg(v,Γδto ) − 1| + |deg(v,Γδti ) − 1|
)

.(10)

8
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Since vδ is smooth and of modulus 1 in A′
δ,t, we have

(11) deg(vδ,Γ
δt
o ) = deg(vδ,Γ

δt
i ) +

∑

m∈Zδ

deg(vδ, δm+ xδ + δΓt).

Argue by contradiction: assume that one of the equalities stated in the lemma is
false. By (11), there has to be a second equality violated among the ones stated.
Therefore, the right-hand side of (10) is at least 2πµ2. We find that Mδ ≥ 2πµ2. If
we pick δ sufficiently small and µ sufficiently close to 1, this inequality contradicts
the fact that M < 2π. �

Lemma 7. We have

(12) lim
δ→0

λ

∫

Aδ

(1 − |uδ|2)2 = 0

and

(13)
lim
t→0

lim sup
δ→0

∫

Aδ \A′

δ,t

|∇uδ|2 = 0.

Proof. Fix µ ∈ (0, 1). For small δ, we have |uδ| ≥ µ in A′
δ,t. Set vδ = uδ/|uδ|. Then

|∇uδ| ≥ µ|∇vδ| and
1

2

∫

A′

δ,t

|∇vδ|2 ≥M ′
δ,t. Thus

Mδ ≥ mδ =
1

2

∫

A′

δ,t

|∇uδ|2 +
1

2

∫

Aδ \A′

δ,t

|∇uδ|2 +
λ

4

∫

Aδ

(1 − |uδ|2)2

≥ µ2M ′
δ,t +

1

2

∫

Aδ \A′

δ,t

|∇uδ|2 +
λ

4

∫

Aδ

(1 − |uδ|2)2.

The conclusion follows then immediately from Lemma 2. �

Lemma 8. Let C be a chord in the unit disk, C different from a diameter. Let S
be the smallest of the two closed regions delimited by C inside the closed unit disk
D̄.
Let O be a smooth bounded domain and let g ∈ C∞(∂O;S).

If u minimizes the Ginzburg–Landau energy
1

2

∫

O

|∇u|2 +
λ

4

∫

O

(1− |u|2)2 among all

the functions that equal g on ∂O, then u(O) ⊂ S.

Proof. We may assume that, for some µ ∈ (0, 1), we have C = {z ∈ D̄; Re z = µ}
and S = {z ∈ D̄; Re z ≥ µ}.

We first claim that Re u ≥ 0. Indeed, the map v = |Re u| + i Im u equals g on
∂O and has same energy as u. Thus both u and v satisfy the Ginzburg–Landau
equation. It follows that Re u and |Re u| are (real) analytical; therefore, so is
Re u−. Since Re u− vanishes near ∂O, we find that Re u− = 0, i. e. Re u ≥ 0.

Let P be the orthogonal projection on S. When z ∈ D̄ ∩ {Re z ≥ 0}, we have

P (z) =











z, if Re z ≥ µ

µ+ i Im z, if |Im z| ≤
√

1 − µ2 and Re z < µ

µ+ i(sgn Im z)
√

1 − µ2, if |Im z| >
√

1 − µ2 and Re z < µ

.

9
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Set w = P ◦u, which equals g on ∂O. Since P is 1-Lipschitz, we have |∇w| ≤ |∇u|.
One may easily check that, for z ∈ D̄ ∩ {Re z ≥ 0}, we have |z| ≤ |P (z)| ≤ 1.
Consequently, the GL energy of w is at most the one of u. By minimality of
u, this implies that |u| = |P ◦ u| everywhere, that is, u(O) ⊂ S ∪ {z ; |z| = 1
and 0 ≤ Re z < µ}. If there is some point Q ∈ Ō such that |u(Q)| = 1 and
0 ≤ Re u(Q) < µ, then Q ∈ O. Thus Q is an interior maximum point for |u|,
which yields |u| ≡ 1 (this is easily seen by applying the maximum principle to the
equation −∆|u|2 = 2λ|u|2(1 − |u|2) − 2|∇u|2 satisfied by |u|2). The Ginzburg–
Landau equation implies that u is constant. This contradicts the existence of Q. In
conclusion, u(O) ⊂ S, as stated in the lemma. �

Lemma 9. Let 0 < µ < ν < 1. Let U be a smooth bounded simply connected
domain and let g ∈ C∞(∂U ; C) be such that ν ≤ |g| ≤ 1. Let u be a minimizer of
the Ginzburg–Landau energy among all maps that equal g on ∂U .

There is some ε > 0, depending on µ and ν, but not on U, g or u, such that, if
∫

U

|∇u|2 < ε, then |u| ≥ µ in Ū .

A variant of Lemma 9, with U a circular annulus, appears in [12]. In our case,
U is supposed simply connected, but otherwise its geometry is arbitrary.

Proof. Let m = min
Ū

|u|. Assume that m < µ, for otherwise we are done. Let

m < t < ν be a regular value of |u|. Then at least one of the connected components
of the level set {|u| = t}, say γ, encloses a minimum point for |u|. Let O be the
interior of γ. Thus O is a smooth set with boundary γ and min

Ō
|u| = m. By Lemma

8, u(γ) is not contained in any zone S delimited by a chord at distance > m from
the origin. Given a point P1 ∈ γ, let C be the chord orthogonal to the segment
0 u(P1), that crosses this segment and is at distance m from the origin. Then there
is some point P2 ∈ γ such that u(P2) and u(P1) are separated by C. Since |u(P1)| =

|u(P2)| = t, this implies that |u(P1) − u(P2)| ≥
√

2t(t−m). Let ϕ be a simple arc

on γ connecting P1 to P2. Then |u(P1)−u(P2)| =

∣

∣

∣

∣

∣

∣

∫

ϕ

∂u

∂τ
dℓ

∣

∣

∣

∣

∣

∣

≤
∫

γ

|∇u| ≤
∫

|u|=t

|∇u|.

The co-area formula yields

ε ≥
∫

U

|∇u|2 ≥
∫

U

|∇u| |∇|u| | =

∫

(

∫

|u|=t

|∇u|dℓ) dt

≥
ν

∫

µ

(

∫

|u|=t

|∇u|dℓ) dt ≥
ν

∫

µ

√

2t(t−m) dt

.

We have a contradiction if ε <

ν
∫

µ

√

2t(t−m) dt. �

We note for further use that, in the above lemma, U need not be smooth. It

suffices to know that |u| > µ+ ν

2
near ∂U .

10
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Lemma 10. Let 0 < µ < ν < 1 and B > 0. Let V be a smooth annular domain of
Newtonian capacity ≥ B (this is equivalent to saying that V is conformally equivalent
to {z; 1 < |z| < R} for some R such that R ≤ eπ/B).

Let g : ∂V → C be a smooth function such that |g| ≥ ν and let u minimize the
Ginzburg–Landau energy among all the maps that equal g on ∂V. Then there is
some ε > 0, depending only on µ, ν and B, but not on g or u, such that |u| ≥ µ

whenever

∫

V

|∇u|2 < ε.

Before proceeding to the proof of the lemma, let us note that the following condition
is sufficient in order to have the capacity of V ≥ B: there are two concentric disks
of radii R1 and eπ/BR1, such that V is contained in the annulus A determined by
the two disks. Indeed, capacity decreases as the domain increases, and the capacity
of A is B.

In particular, we may apply, for some B independent of sufficiently small t > 0
and δ, the above lemma to each connected component of Aδ\A′

δ,t. Consequently,

Lemma 10 combined with (13) in Lemma 7 and Lemma 4 yields immediately the
following

Lemma 11. We have |uδ| → 1 uniformly in Aδ as δ → 0.

Proof. Let Φ−1 be a conformal representation of V into {z; 1 < |z| < R}, with
R ≤ N = eπ/B . Then

2π
∫

0

(

R
∫

1

|∇(u ◦ Φ)
(

reiθ)|dr
)2
dθ ≤

2π
∫

0

R
∫

1

r|∇u ◦ Φ(reiθ)|2dr dθ lnR

= lnR

∫

V

|∇u|2 < ε lnR ≤ επ

B

.

Therefore, there is some θ such that

R
∫

1

|∇(u ◦ Φ)(reiθ)|dr ≤
√

ε

2B
.

We find that

|u(Φ(reiθ)) − u(Φ(seiθ))| ≤
√

ε

2B
, ∀ r, s ∈ [1, R].

Since |u(Φ(Reiθ))| ≥ ν, we obtain that |u(Φ(reiθ))| ≥ µ+ ν

2
, ∀ r, s ∈ [1, R],

provided ε is sufficiently small (depending only on µ, ν,B).
Let now U = V \ {Φ(reiθ); r ∈ (1, R)}. Then U is simply connected, since U =

Φ(B), with B = {z; 1 < |z| < R} \ {reiθ; r ∈ (1, R)}, which is simply connected.

Since clearly |u| ≥ 2µ+ ν

3
near ∂U , we are in position to apply Lemma 9 in order

to conclude. �

Step 4. Proof of Theorem 1 b) (the H1 part) and of Corollary 1

To summarize, up to now we know that |uδ| → 1 uniformly on Āδ.
11
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We may write locally uδ, which is smooth and of modulus 1, as uδ = eiϕ
δ

, with ϕδ

smooth. ϕδ is not globally defined; however, its gradient is, since ∇ϕδ = uδ ×∇uδ.
The fact that uδ is a minimizer for (P2) reads [6], Chapter 1

(14)































































div (∇ϕδ) = 0 in Aδ

∇ϕδ · ν = 0 on ∂Aδ
∫

Γo

∇ϕδ · τ = 2π

∫

Γi

∇ϕδ · τ = 2π

∫

δm+xδ+δΓ

∇ϕδ · τ = 0 for any m ∈ Zδ

.

For small δ, the map vδ = uδ/u
δ does not vanish, has modulus 1 and degree 0

on each component of ∂Aδ. Thus we may write globally uδ = uδρδe
iψδ , where

0 < ρδ < 1 and ψδ is smooth. The fact that (uδ) is a minimizer for (P1) translates
into [4]

(15)























div (ρ2
δ(∇ϕδ + ∇ψδ)) = 0 in Aδ

∂ψδ
∂ν

= 0 on ∂Aδ

−∆ρδ = λρδ(1 − ρ2
δ) − ρδ|∇ϕδ + ∇ψδ|2 in Aδ

ρδ = 1 on ∂Aδ

.

The following two results are not optimal, but suffice to our purposes.

Lemma 12. We have |∇uδ| ≤ C

δ
for some C independent of small δ.

Proof. With the notations in the proof of Proposition 1, we have |∇Φ| = |∇ϕδ| =

|∇uδ|, so that the lemma amounts to |∇Φ| ≤ C

δ
.

Given any small number ε > 0 and any integer M , we may cover Aδ with a
collection of disks (Di)i∈I such that:
(i) for each i, either Di ⊂ Aδ, or Di is centered on ∂Aδ;
(ii) the radius ri of the disk Di is bounded from below by c1δ and from above by
c2δ, where c1, c2 > 0 do not depend on small δ;
(iii) the disks D∗

i , concentric with the Di’s and twice smaller, cover Aδ;
(iv) for each i such that Di is centered on ∂Aδ, Di ∩Aδ is diffeomorphic to the
half unit disk D∩{Im z ≥ 0} through a diffeomorphism Ψi mapping Di ∩∂Aδ onto
D ∩ R and such that ‖Dk(Ψi − r−1

i Ri)‖L∞ ≤ Cεδ−k . Here, Ri is an appropriate
isometry and C does not depend on 0 ≤ k ≤M .

Assume first that Di ⊂ Aδ. By standard estimates for harmonic functions, we

have ‖∇Φ‖L∞(D∗

i ) ≤
C

ri
‖∇Φ‖L2(Di), so that |∇Φ| ≤ C

δ
on D∗

i (here, we use (ii) and

the uniform bound ‖∇Φ‖2
L2(Aδ) = 2Mδ ≤ C).

Assume next that the center of Di is on ∂Aδ. Provided that, in (iv), ε is suffi-
ciently small andM is sufficiently large, we have the following estimate [11], Chapter

9: ‖∇ψ‖L∞(D∗

i ∩Aδ) ≤
C

ri
‖∇ψ‖L2(Di∩Aδ) for each harmonic function ψ that vanishes

12
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on Di ∩ ∂Aδ. Noting that Φ is constant on each component of Aδ ([6], Chapter 1),
we may apply the preceding estimate to ψ = Φ − Φ(xi), where xi is the center of

Di, and find as above |∇Φ| ≤ C

δ
on D∗

i ∩Aδ.

Finally, (iii) implies that |∇Φ| ≤ C

δ
in Aδ. �

Corollary 2. We have

∫

|∇uδ|4 ≤ C

δ2
.

Proof. We have

∫

|∇uδ|4 ≤ ‖∇uδ‖2
L∞

∫

|∇uδ|2 ≤ C

δ2
. �

Before stating the next result, let us recall that, for small δ, we may write uδ =
ρδu

δeiψδ .

Lemma 13. We have, for small δ,

∫

Aδ

(|∇ρδ|2 + |∇ψδ|2 + λ(1 − ρ2
δ)

2) ≤ C

λδ2
.

Proof. We have Eλ(uδ) =
1

2

∫

Aδ

(|∇ρδ|2+ρ2
δ |∇ϕδ+∇ψδ|2+

λ

2
(1−ρ2

δ)
2) and Eλ(u

δ) =

1

2

∫

Aδ

|∇ϕδ|2. The inequality Eλ(uδ) ≤ Eλ(u
δ) reads, after some algebraic manipu-

lations:

(16)

∫

Aδ

(ρ2
δ |∇ψδ|2 + |∇ρδ|2 +

λ

2
(1 − ρ2

δ)
2) + 2

∫

Aδ

ρ2
δ∇ϕδ · ∇ψδ ≤

∫

Aδ

(1 − ρ2
δ)|∇ϕδ|2.

Multiplying by ψδ the equation (14) satisfied by ∇ϕδ, we find that

∫

Aδ

∇ϕδ ·∇ψδ = 0.

Using Cauchy-Schwarz and the fact that ρδ → 1 uniformly in Aδ as δ → 0, this
yields, for small δ:

(17)

∣

∣

∣

∣

2

∫

Aδ

ρ2
δ∇ϕδ · ∇ψδ

∣

∣

∣

∣

=

∣

∣

∣

∣

2

∫

Aδ

(ρ2
δ − 1)∇ϕδ · ∇ψδ

∣

∣

∣

∣

≤ 1

2

∫

Aδ

ρ2
δ |∇ψδ|2 +

1

2

∫

Aδ

(1 − ρ2
δ)|∇ϕδ|2

.

Inserting (17) into (16) and using again the fact that ρδ → 1, we find, for small δ,
that

(18)

∫

Aδ

(|∇ρδ|2 + |∇ψδ|2 + λ(1 − ρ2
δ)

2) ≤ C

∫

Aδ

(1 − ρ2
δ)|∇ϕδ|2.

Corollary 2 combined with Cauchy-Schwarz and (18) implies that

(19)

∫

Aδ

(|∇ρδ|2 + |∇ψδ|2 +
λ

2
(1 − ρ2

δ)
2) ≤ C

λ

∫

Aδ

|∇ϕδ|4 ≤ C

λδ2
.

�

13
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We may now complete the proof of Theorem 1 b) (the H1 part) and Corollary 1:

assumption (H1) and the preceding lemma imply that

∫

Aδ

(|∇ρδ|2 + |∇ψδ|2) → 0.

The extension ζδ of ρδ to A with the value 1 satisfies ζδ − 1 → 0 in H1(A) (recall
that ρδ → 1 uniformly in Aδ). Using a standard extension result, we may extend
ψδ to a map ηδ in A such that ∇ηδ → 0 in L2(A). Let aδ be the average of ηδ on A.
Then ηδ − aδ → 0 in H1(A). Setting αδ = eiaδ and wδ = αδζδe

iηδ , we then clearly

have wδ → 1 in H1(A) and, in Aδ, wδ = αδ
uδ
uδ

. This implies both Theorem 1 b)

and Corollary 1. �

Step 5. Proof of Theorem 1 b) (uniform convergence part)

By (15), the smooth vector field X = ρ2
δ(∇ϕδ + ∇ψδ) satisfies div X = 0. Thus,

we may write (at least locally) X = (∂H/∂y,−∂H/∂x) for some smooth H = Hδ.
The condition X ·ν = 0 on ∂Aδ implies ([6], Chapter 1) that H is single-valued and
constant on each component of ∂Aδ.
On the other hand, the fact that ρδ → 1 uniformly in Aδ implies that, for small δ,

we have
1

2
|∇ϕδ + ∇ψδ| ≤ |∇H| ≤ 2|∇ϕδ + ∇ψδ|. Using the identity

|∇uδ|2 = |∇ρδ|2 + ρ2
δ |∇ϕδ + ∇ψδ|2,

we find that

(20)

∫

Aδ

|∇H|2 ≤ C.

We may rewrite the equation div X = 0 as

∆ψδ = ∆ψδ + div ∇ϕδ = −2/ρδ∇ρδ · (∇ψδ + ∇ϕδ).
In terms of H, this may be reformulated as

(21) ∆ψδ = ∇
(

1

ρ2
δ

)

×∇H.

This equation is complemented with the Neumann condition ∂ψδ/∂ν = 0 on ∂Aδ.
We next recall the following result (due to Choné and quoted in [7])

Lemma 14. Let ϕ solve

{

∆ϕ = ∇u×∇v in Ω

∂ϕ/∂ν = 0 on ∂Ω
. Here,

(i) Ω is a smooth bounded domain in R
2;

(ii) u, v ∈ H1;
(iii) u is constant on each component of ∂Ω.
Then, with some constant C > 0 independent of Ω and for some c ∈ R (depending
on ϕ), we have

(22) ‖ϕ− c‖L∞(Ω) ≤ C(‖∇u‖2
L2(Ω) + ‖∇v‖2

L2(Ω)).

Before going further, let us note that one may transform the additive estimate
(22) into a multiplicative one. Indeed, if we replace u, v by tu, t−1v, for arbitrary
t > 0, this will not affect the equation satisfied by ϕ. If we write (22) for tu, t−1v,
then minimize over t, we find

(23) ‖ϕ− c‖L∞(Ω) ≤ 2C‖∇u‖L2(Ω)‖∇v‖L2(Ω).
14
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Applying this estimate to the equation (21) (note that (iii) in the above lemma

comes from the fact that
1

ρ2
δ

= 1 on ∂Aδ) and using Lemma 13 and (20), we find,

with c = cδ, that ‖ψδ−cδ‖L∞(Aδ) → 0. On the other hand, Corollary 1 implies that
‖ψδ − aδ‖L2(Aδ) → 0. We easily obtain that ‖ψδ − aδ‖L∞(Aδ) → 0, which implies
Theorem 1 b) (uniform convergence part). �

Step 6. Pointwise estimates for ∇uδ

We rely on the following Gagliardo-Nirenberg type estimate established in the Ap-
pendix of [5]

Lemma 15. Let Ω be a smooth bounded domain in R
2. If u ∈ C2(Ω) and u = 0 on

∂Ω, then ‖∇u‖L∞(Ω) ≤ CΩ‖u‖1/2
L∞(Ω)‖∆u‖

1/2
L∞(Ω). Here, CΩ depends on Ω, but not

on u.

Of especial interest to us is the dependence of CΩ on Ω. An inspection of the
proof of the above lemma in [5] shows that CΩ depends only on the geometry of
Ω. More specifically, let ε be sufficiently small, M ∈ N be sufficiently large. Then
there is some r = rΩ such that we may cover Ω with disks Di of radius r and:
(i) for each i, either Di ⊂ Ω, or Di is centered on ∂Ω;
(ii) the disks D∗

i , concentric with the Di’s and twice smaller, cover Ω;
(iii) for each i such that Di is centered on ∂Ω, Di ∩ Ω is diffeomorphic to the half
unit disk D∩{Im z ≥ 0} through a diffeomorphism Ψi mapping Di∩∂Ω onto D∩R

and such that ‖Dk(Ψi− r−1Ri)‖L∞ ≤ Cεr−k . Here, Ri is an appropriate isometry
and C does not depend on 0 ≤ k ≤M .

Then CΩ depends only on r. If we consider the scaled domains Ω = Ωδ = δ−1Aδ,
we may clearly pick an rΩ satisfying (i)-(iii) and independent of small δ. Thus, we

may choose a constant C independent of small δ such that, for any u ∈ C2(δ−1Aδ)
such that u = 0 on ∂(δ−1Aδ), we have

(24) ‖∇u‖L∞(δ−1Aδ) ≤ C‖u‖1/2
L∞(δ−1Aδ)‖∆u‖

1/2
L∞(δ−1Aδ).

On the other hand, the estimate in Lemma 15 is scale invariant, that is, CtΩ = CΩ,
t > 0. Thus, with C independent of small δ, we have

(25) ‖∇u‖L∞(Aδ) ≤ C‖u‖1/2
L∞(Aδ)‖∆u‖

1/2
L∞(Aδ), u ∈ C2(Aδ), u = 0 on ∂Aδ.

Recalling the equation (15) satisfied by ρδ and Lemma 12, we find, with the help
of (25) applied to u = 1 − ρδ, that

(26) ‖∇ρδ‖L∞(Aδ) = o

(

1√
λ

+ ‖∇ψδ‖L∞(Aδ)

)

as δ → 0.

Lemma 16. We have ‖∇ψδ‖L∞(Aδ) ≤ C

(

1

δ
+ ‖∇ρδ‖L∞(Aδ)

)

, with C independent

of small δ.

Proof. The idea is to estimate rather ∇H than ∇ψδ. It suffices to prove, with C
independent of small δ, the following inequality:

(27) ‖∇H‖L∞(Aδ) ≤ C

(

1

δ
+ ‖∇ρδ‖L∞(Aδ)

)

.
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Recall that ∇ϕδ + ∇ψδ =
1

ρ2
δ

(∂H/∂y,−∂H/∂x). This implies that H satisfies the

equation div (1/ρ2
δ∇H) = 0. On the other hand, recall that H is constant on each

component of ∂Aδ. The degree conditions on uδ on ∂Aδ together with the preceding
discussion imply that H is solution of































































∆H = 2ρ−1
δ ∇ρδ · ∇H in Aδ

H = const. on each component of ∂Aδ
∫

Γo

∂H

∂ν
= 2π

∫

Γi

∂H

∂ν
= 2π

∫

δm+xδ+mΓ

∂H

∂ν
= 0 for each m ∈ Zδ

.

Note that H achieves its minimum only on Γi and its maximum only on Γo; this

is a consequence of the equation div

(

1

ρ2
δ

∇H
)

= 0, complemented by Neumann

conditions, satisfied by H. By adding an appropriate constant to H, we may further
assume that minH = H|Γi

= 0.
We first claim that H is bounded independently of small δ. Indeed, by (20), we
have

maxH = H|Γo
=

1

2π

∫

Γo

H
∂H

∂ν
=

1

2π

∫

Aδ

1

ρ2
δ

|∇H|2 ≤ C.

We next split H = H1 +H2, where H1 is harmonic and agrees with H on ∂Aδ. We
first note that, by (20), we have

∫

Aδ

|∇H1|2 ≤
∫

Aδ

|∇H|2 ≤ C.

The proof of Lemma 12 implies that

(28) ‖∇H1‖ ≤ C

δ
.

On the other hand, |H2| ≤ |H1| +H ≤ 2‖H‖L∞(Aδ) ≤ C. Therefore, estimate (25)
applied to H2 yields

‖∇H2‖L∞(Aδ) ≤ C‖∇H‖1/2
L∞(Aδ)‖∇ρδ|

1/2
L∞(Aδ)

≤ C

(

1

δ1/2
+ ‖∇H2‖1/2

L∞(Aδ)

)

‖∇ρδ‖1/2
L∞(Aδ)

,

so that

(29) ‖∇H2‖L∞(Aδ) ≤ C

(

1

δ
+ ‖∇ρδ‖L∞(Aδ)

)

.

We conclude by combining (28) to (29). �

Lemma 12, Lemma 16 and (26) imply immediately the following pointwise esti-
mate:

(30) ‖∇uδ‖L∞(Aδ) = o

(

1√
λ

)

as δ → 0.

16



Two-parameter homogenization for GL L. Berlyand & P. Mironescu

Step 7. Uniqueness (modulo S
1) of uδ for small δ

The proof in [17], which yields uniqueness for the Dirichlet problem (see also [16],
Chapter 8 and [15]), adapts to minimizers of (3). The key ingredients are the

inequality ‖∇uδ‖L∞(Aδ) = o(1/
√
λ) and the fact that ρδ → 1 uniformly in Aδ as

δ → 0. As proved in [4], unde these two hypotheses, if δ is sufficiently small and
uδ, u

′
δ minimize (3), then there is some α ∈ S

1 such that u′δ = αuδ. �

3. Proof of Theorem 3

We essentialy follow [3]. The main step consists in proving that the energy and
the zeroes of un concentrate ”near” ∂A.
We start by recalling the following upper bound for mδ [3]

Lemma 17. We have mδ ≤ 2π.

Without loss in generality, we may assume that a quasi-minimizing sequence
{un} satisfies Eλ(un) < 2π + e−λ. This energy bound, together with Lemma 3
implies, as in the proof of Lemma 4, that, for each µ ∈ (0, 1) and sufficiently small
t > 0, we have

(31) |un| ≥ µ in A′
δ,t, n ∈ N, δ small.

Lemma 18. For sufficiently small δ and t, we have
∫

{x∈Aδ; δt<dist(x,δm+xδ+δΓ)<2δt}

|∇(un/|un|)|2 ≥ Ctdeg2(un/|un| , δm+ xδ + δΓt),

with C independent of δ, t and m ∈ Zδ.

Proof. By scale invariance, we may assume that δ = 1, xδ = 0, m = 0. Let v be the
S

1-valued map obtained by rescaling un/|un|. The map x 7→ f(x) :=dist(x,Γ) is,
near Γ, smooth and has gradient of modulus 1. The co-area formula implies that

(32)

∫

{t<f(x)<2t}

|∇v|2 =

2t
∫

t

∫

Γs

|∇v|2dℓ ds.

On the other hand, we have, for each s ∈ (t, 2t),

deg (v , Γs) = deg (un/|un| , δm+ xδ + δΓt) := d.

Since

d2 =
1

4π2

(
∫

Γs

v × ∂v

∂τ

)2

≤ |Γs|
4π2

∫

Γs

|∇v|2d ℓ,

(32) implies that
∫

{t<f(x)<2t}

|∇v|2 ≥ Ct

min{|Γs| ; t < s < 2t}d
2 ≥ Ctd2.

�

The analog of Lemma 6 is

Lemma 19. For sufficiently small δ and t > 0 and for sufficiently large n, the map
un/|un| has degree 0 on each component of ∂A′

δ,t.

17
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Proof. In view of (31), we may assume the |un| ≥ µ on ∂A′
δ,t; here, µ ∈ (0, 1)

is to be chosen later. As in the proof of Lemma 6, Lemma 5 implies that, with
v = vn = un/|un|, we have

(33)

2π + e−λ ≥πµ2

(

∑

m∈Zδ

|deg(v, δm+ xδ + δΓt)| + |deg(v,Γδto ) − 1|

+ |deg(v,Γδti ) − 1|) +
λ

4

∫

Aδ

(1 − |un|2)2 +
µ2

2

∫

A′

δ,t

|∇v|2
).

If all the terms containing degrees vanish, then v is a test function for (P2′t). Thus
(by Lemma 2) the last integral in (33) is larger than 2π + e−λ, provided µ is
sufficiently close to 1 and δ, t are sufficiently small. Therefore, there has to be a
term containing a degree that does not vanish (and therefore a second one, by the
proof of Lemma 6). We easily find that, for small δ and t, exactly two of these
terms equal 1, all the others vanish. It follows, in addition, that

(34) lim
δ→0

(

λ

∫

Aδ

(1 − |un|2)2 +

∫

A′

δ,t

|∇(un/|un|)|2
)

= 0 uniformly in n.

In view of the preceding discussion, we are done if we prove that, for small δ and t,
we have deg(un/|un|,Γδto ) =deg(un/|un|,Γδti ) = 0.
We start by noting that, for small δ and t and for each m ∈ Zδ, we have

deg (un/|un| , δm+ xδ + δΓt) = 0.

This follows immediately by combining Lemma 18 to (34).
In view of the balancing condition (11), this leaves us with two possibilities, for
small δ and t and possibly after passing to a subsequence in δ: either the degrees on
Γδto and Γδti equal 0, or they equal 2. If we rule out the second possibility, then we
are done. Argue by contradiction and assume that the degrees are 2. Then, in A′

δ,t,

un/|un| is a test function for a problem (P ′′
t ), similar to (P2′t), but this time with

degrees 2 instead of 1 on Γtδo and Γtδi . It turns out that the energy of this problem
is four times the one of (P2′t). (Indeed, it is easy to see that, if v minimizes (P2′t),
then v2 minimizes (P ′′

t ). On the other hand, we have |∇v2| = 4|∇v|2). In view of
Lemma 2, we find that

lim inf
1

2

∫

A′

δ,t

|∇(un/|un|)|2 ≥ 4M > 0.

This contradicts (34). �

Lemma 20. For small t, we have:

a) lim
δ→0

∫

{x∈A ; dist(x,Γo)<δt}

|∇un|2 = lim
δ→0

∫

{x∈A ; dist(x,Γi)<δt}

|∇un|2 = π;

b) lim
δ→0

∫

Aδt

|∇un|2 = 0;

c) lim
δ→0

λ

∫

A

(1 − |un|2)2 = 0;

d) |un| → 1 uniformly, as δ → 0, in Aδt.

18
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Proof. By Lemma 5 and Lemma 19, we have

lim inf
δ→0

∫

{x∈A ; dist(x,Γo)<δt}

|∇un|2 ≥ π,

and a similar estimate holds for the second integral in a). The upper bound
Eλ(un) < 2π + e−λ implies a), b) and c). d) is a consequence of b) and of Lemma
10. �

As explained in [3], the information contained in Lemma 20 yield the conclusion
of Theorem 3. In [3], the domain considered is fixed, but the proof there applies
with no changes to our situation. �

4. Proof of Theorem 2

Outline of the proof. We argue by contradiction and assume that, for small δ,
the minimum is attained in (3). We consider, for such δ, a minimizer u. Recalling
the upper bound mδ ≤ 2π, we have Eλ(u) ≤ 2π. In Step 3, we prove that this upper
bound implies that ”far away” from ∂A, u is ”almost” constant. In the case of a
fixed domain, this was proved in [4]; here, we use an alternative approach. Steps 1
and 2 provide preliminary estimates needed in Step 3. In Step 5, we prove that the
energy of a map which is almost constant far away from ∂A is, for small δ, strictly
larger than 2π. Thus, the minimum is not attained in (3). The method comes from
[1]. The technical part needed in the proof is adapted to our situation in Step 4.

We will use (H2) in the following equivalent form: for each C,K, a > 0, we have

Ke−Cδ
√
λ ≤ λ−a for sufficiently small δ.

Step 1. Estimates for small energy solutions of the GL equation

To start with, we recall the following result [5]

Lemma 21. Let λ ≥ 1 and let ρ satisfy −∆ρ = λρ(1 − ρ2) − f in D(0, 1/3), with

0 ≤ ρ ≤ 1 and f ≥ 0. Then 1 − ρ2(x) ≤ C

λ
‖f‖L∞(D), |x| ≤ 1/4, where C does not

depend on f or ρ.

We will need the following quantitative version of Lemma 3

Lemma 22. Let u be a solution of the GL equation −∆u = λu(1−|u|2) in D(0, R)
satisfying:
(i) λR2 ≥ 1;

(ii) the energy bound Eλ(u) = K2 ≤ 1/
√
λR2.

Then there is some ε, independent of u, K, λ or R, such that, if u satisfies in
addition
(iii) 1 − ε ≤ |u| ≤ 1,

then |∇u(0)| ≤ CK

R
and 1 − |u(0)|2 ≤ CK2

λR2
.

Here, C does not depend on u, K or λ.

Proof. We may assume R = 1; the general case follows by scaling. Throughout the
proof, C, C ′ will denote universal constants.
Let ε > 0 to be fixed later. We write, in D, u = ρeiϕ, with 1 − ε ≤ ρ ≤ 1 and ϕ
smooth.
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We start by exploiting the equation satisfied by ϕ. By Fubini, there is some
r ∈ (3/4, 1) such that the restriction v of u to C(0, r) satisfies ‖∇v‖L2(C(0,r)) ≤ CK.
Then the restriction ψ of ϕ to C(0, r) satisfies ‖∇ϕ‖L2(C(0,r)) ≤ C ′K. Let Φ be the

harmonic extension of ψ to D(0, r). Since ϕ satisfies div(ρ2∇ϕ) = 0, we find that

ζ := ϕ− Φ is solution of

{

∆ζ = div ((1 − ρ2)∇ϕ) in D(0, r)

ζ = 0 on C(0, r)
. Thus

‖∇ζ‖L4(D(0,r)) ≤ C‖(1 − ρ2)∇ϕ‖L4(D(0,r)) ≤ 2Cε(‖∇ζ‖L4(D(0,r)) + ‖∇Φ‖L4(D(0,r))).

Here, C is independent of r (this follows from the scale invariance of the preceding
estimate). If ε is sufficiently small, we find that ‖∇ζ‖L4(D(0,r)) ≤ C ′‖∇Φ‖L4(D(0,r)).
On the other hand, we have

‖∇Φ‖L4(D(0,r)) ≤ C

∥

∥

∥

∥

Φ − 1

πr2

∫

D(0,r)

Φ

∥

∥

∥

∥

H3/2(D(0,r))

≤ C ′‖ψ‖H1(C(0,r));

here, C,C ′ are independent of r ∈ (3/4, 1), by scale invariance. By choice of r, we
find that

(35) ‖∇ϕ‖L4(D(0,3/4)) ≤ CK.

We now turn to the equation −∆ρ = λρ(1 − ρ)2 − ρ|∇ϕ|2 satisfied by ρ. By

Fubini, there is some r ∈ (2/3, 3/4) such that

∫

C(0,r)

(|∇ρ|2 + λ(1 − ρ2)2) ≤ CK2.

For such r, we have

(36)

∣

∣

∣

∣

∫

C(0,r)

(1 − ρ)
∂ρ

∂ν

∣

∣

∣

∣

≤
(

∫

C(0,r)

(1 − ρ)2
)1/2( ∫

C(0,r)

|∇ρ|2
)1/2

≤ CK2

√
λ
.

We multiply by 1−ρ the equation of ρ and integrate it over D(0, r). Using Cauchy-
Schwarz and assuming ε sufficiently small, we find, with the help of (35) and (36),
that

(37)

∫

D(0,r)

(λ(1 − ρ2)2 + |∇ρ|2) ≤ −
∫

C(0,r)

(1 − ρ)
∂ρ

∂ν
+

∫

D(0,r)

(1 − ρ)|∇ϕ|2

≤ CK2

√
λ

+
λ

2

∫

D(0,r)

(1 − ρ2)2 +
CK4

λ

.

In view of the energy bound K2 ≤ 1/
√
λ ≤ 1, we find that

K4

λ
≤ K2

√
λ

, so that

(38)

‖∆ρ‖2
L2(D(0,r)) ≤ λ2

∫

D(0,r)

(1 − ρ2)2 + ‖∇ϕ‖4
L4(D(0,r)) ≤ CK2

√
λ+ CK4 ≤ C ′K2

√
λ.

Returning to (37), we obtain also

(39)

∫

D(0,r)

|∇ρ|2 ≤ CK2

√
λ
.

The standard estimate

‖∇ρ‖Lp(D(0,1/2)) ≤ Cp(‖∇ρ‖L2(D(0,2/3)) + ‖∆ρ‖L2(D(0,2/3))), 1 < p <∞,
20
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yields, with the help of (38), (39) and of the fact that λ ≥ 1,

(40) ‖∇ρ‖Lp(D(0,1/2)) ≤ CpK
4
√
λ, 1 < p <∞.

We next return to the equation ∆ϕ = −2ρ−1∇ρ · ∇ϕ satisfied by ϕ. In view of
(35) and (40), we have ‖∆ϕ‖Lq(D(0,1/2)) ≤ CqK

2 4
√
λ, q < 4. The estimate

‖∇ϕ‖L∞(D(0,1/3)) ≤ Cq(‖∇ϕ‖L2(D(0,1/2)) + ‖∆ϕ‖Lq(D(0,1/2))), q > 2,

implies that

(41) ‖∇ϕ‖L∞(D(0,1/3)) ≤ CK.

We are now in position to apply Lemma 21 and infer, with the help of (41) and of
the equation satisfied by ρ, that

(42) 1 − ρ2 ≤ CK2

λ
in D(0, 1/4).

Thus ‖∆ρ‖L∞(D(0,1/4)) ≤ CK2. Finally, the estimate

‖∇ρ‖L∞(D(0,1/8)) ≤ C(‖∇ρ‖L2(D(0,1/2)) + ‖∆ρ‖L∞(D(0,1/4)))

implies that

(43) ‖∇ρ‖L∞(D(0,1/8)) ≤ CK.

We conclude by combining (41), (42) and (43). �

Step 2. Concentration of the energy near ∂A

In the remaining part of the proof, u is a minimizer of (3).
Recall that At = {x ∈ A ; dist(x, ∂A) > t}.
Lemma 23. There is some sufficiently large C such that, for small δ, we have:

(i) |u| ≥ 1/2 in AC/
√
λ;

(ii) deg(u/|u|,ΓC/
√
λ

o ) =deg(u/|u|,ΓC/
√
λ

i ) = 0.

Proof. (i) is a consequence of Lemma 3 and of Lemma 20 d). In order to obtain (ii),
we rely on Lemma 19. By homotopy invariance of the degree, we have, for small

t > 0 and δ, that deg(u/|u|,ΓC/
√
λ

o )=deg(u/|u|,Γtδo ) = 0, and a similar equality
holds for the inner boundary Γi. �

Recall that we set A′
δ,t = {x ∈ Aδ ; dist(x, ∂A) > tδ}.

Lemma 24. Let t > 0 be sufficiently small and let a > 0. Then, for small δ, we
have

∫

A′

δ,t

(|∇u|2 + λ(1 − |u|2)2) ≤ λ−a.

Proof. Throughout the proof, Cj will denote a constant independent of δ or u. Let
f(s) = f(s, δ) be the energy of u in As ∩Aδ, that is

f(s) =
1

2

∫

As∩Aδ

|∇u|2 +
λ

4

∫

As∩Aδ

(1 − |u|2)2.
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We will consider only s < t0δ, with sufficiently small t0. Since, near ∂A, the distance
to ∂A is smooth and has gradient of modulus 1, we have

f ′(s) = −1

2

∫

Γs
o∪Γs

i

|∇u|2 − λ

4

∫

Γs
o∪Γs

i

(1 − |u|2)2

(this follows from the co-area formula). Let C be as in the preceding lemma and

let C/
√
λ ≤ s ≤ t0δ. By (9), we have

∫

Aδ\As

|∇u|2 ≥ 2

∫

Aδ\As

|Jac u| ≥
∣

∣

∣

∣

∫

Γo

u× ∂u

∂τ
−

∫

Γs
o

u× ∂u

∂τ

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Γi

u× ∂u

∂τ
−

∫

Γs
i

u× ∂u

∂τ

∣

∣

∣

∣

.

Since u ∈ J , we have
∫

Γo

u× ∂u

∂τ
=

∫

Γi

u× ∂u

∂τ
= 2π.

On the other hand, since |u| ≥ 1/2 in As ∩ Aδ and the degrees of u/|u| on each
component of ∂(As ∩ Aδ) equal zero, we may write, globally in As ∩ Aδ, u = ρeiϕ,
with 1/2 ≤ ρ ≤ 1, ρ and ϕ smooth. Thus

∫

Γs
o

u× ∂u

∂τ
=

∫

Γs
o

ρ2 ∂ϕ

∂τ
=

∫

Γs
o

(ρ2 − 1)
∂ϕ

∂τ
.

We find that
∣

∣

∣

∣

∫

Γs
o

u×∂u
∂τ

∣

∣

∣

∣

≤
(

∫

Γs
o

(ρ2−1)2
)1/2( ∫

Γs
o

|∇ϕ|2
)1/2

≤ C1

(
∫

Γs
o

(ρ2−1)2
)1/2( ∫

Γs
o

|∇u|2
)1/2

;

a similar estimate holds for Γsi . We obtain
(44)

∫

Aδ\As

|∇u|2 ≥ 4π − C1

(
∫

Γs
o∪Γs

i

(ρ2 − 1)2
)1/2( ∫

Γs
o∪Γs

i

|∇u|2
)1/2

≥ 4π +
C2f

′(s)√
λ

.

On the other hand, we have

(45) 2π ≥ Eλ(u) =
1

2

∫

Aδ\As

|∇u|2 +
1

2

∫

As∩Aδ

|∇u|2 +
λ

4

∫

Aδ

(1 − |u|2)2.

By combining (44) to (45), we find that f(s) +
C2f

′(s)√
λ

≤ 0. Equivalently, the map

s 7→ es
√
λ/C2f(s) is non-increasing in [C/

√
λ, t0δ]. Since f(s) ≤ Eλ(u) ≤ 2π, we

find that

(46) f(s) ≤ f(C/
√
λ)e(C/

√
λ)

√
λ/C2e−s

√
λ/C2 ≤ C3e

−s
√
λ/C2 , if C/

√
λ ≤ s ≤ t0δ.

The conclusion of the lemma follows by taking, in (46), s = tδ and using (H2). �

Step 3. u is almost constant far away from ∂Aδ

Lemma 25. Let a > 0. Then, for small t and δ and for any x ∈ A′
δ,t, we have

|∇u(x)| ≤ λ−a and 1 − |u(x)|2 ≤ λ−a.
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Proof. We apply Lemma 22 in B(x, tδ/2). The upper bound in Lemma 24 (with t
replaced by t/2) yields immediately the desired conclusion. �

Recall that we may write, for small δ and t, u = ρeiϕ in Atδ, with 1/2 ≤ ρ ≤ 1
and smooth ρ and ϕ.

Lemma 26. There is some b = b(u) such that, for small δ and t and fixed a > 0,
we have |ϕ− b| ≤ λ−a in A′

δ,t.

Proof. There is some C independent of δ, t such that two points x, y in A′
δ,t can be

connected by a path γ contained in A′
δ,t and of length ≤ C. Since |ϕ(x) − ϕ(y)| ≤

C length(γ) sup
γ

|∇u|, the conclusion follows then from the bound |∇u| ≤ λ−a in

A′
δ,t; it suffices to take b = ϕ(x), where x is any point in A′

δ,t. �

Setting α = α(u) = ei b, we find immediately from Lemma 25 and Lemma 26
that

(47) ‖u− α‖L∞(A′

δ,t)
≤ λ−a for small δ.

Lemma 27. Let t > 0 be sufficiently small and let a > 0. Then, for small δ, we

have

∫

Aδ

(1 − |u|2)2 ≤ λ−a.

Proof. It suffices to combine (45) to (44). The desired conclusion follows with the
help of Lemma 25. �

Step 4. An auxiliary linear problem

We adapt here the main idea in [1] to our situation. We fix c > 0 and let rj =

rj(δ) = j c δ, j = 1, 2; here, δ is sufficiently small. Let g ∈ H1/2((0, 2π); S1) be

2π-periodic. We may identify this map with an H1/2-map on S
1 and compute its

degree. We assume in what follows that deg(g, (0, 2π)) = 1 and Im

(

2π
∫

0

g(θ)dθ

)

= 0

(in this section, such a g will be called admissible).
We consider the following class L = Lg of test maps w, consisting of complex-valued
H1-maps defined in (0, r2) × (0, 2π) and defined by the constraints

L = {w ; w(r2, θ) = g(θ) a. e., w is 2π − periodic in θ}.
For w ∈ L, consider the energy

Fµ(w) =

r2
∫

0

dr

2π
∫

0

dθ |∇w|2 +

r1
∫

0

dr

2π
∫

0

dθ

(

µ

2
(Re w − 1)2 − 1

2µ
(Im w)2

)

,

and the associated minimization problem

(48) (Pµ) Rµ := min{Fµ(w) ; w ∈ L}.
Lemma 28. Assume that (H3) lim

δ→0

√
µδ/ lnµ = ∞. Then there is some δ0 inde-

pendent of the admissible map g such that, for δ < δ0, we have Rµ > π.
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Proof. Let w ∈ L. We may extend w by symmetry with respect to r to (−r2, 0) ×
(0, 2π). The new map, still denoted w, satisfies

(49) w(±r2, θ) = g(θ) a. e., w is 2π − periodic in θ.

We have Fµ(w) =
1

2
Gµ(w), where

Gµ(w) =

r2
∫

−r2

dr

2π
∫

0

dθ|∇w|2 +

r1
∫

−r1

dr

2π
∫

0

dθ

(

µ

2
(Re w − 1)2 − 1

2µ
(Im w)2

)

.

Thus Rµ ≥ 1

2
Sµ, where Sµ is the minimum of Gµ over all the maps w defined

in (−r2, r2) × (0, 2π) satisfying (49). We are bound to prove that Sµ > 2π for
small δ. The value of Sµ is explicitely computed in [1]; in particular, Sµ (thus Rµ)
is attained if µ < 1. As explained there, for µ < 1 we have Sµ > 2π for each
admissible g provided that the following condition (which is independent of g) is
satisfied:

(50) αµn < βµn , ∀ n ∈ N
∗,

with

αµn =
1 −

√

1 − µ−1n−2 tanh(r1
√

n2 − µ−1)

1 +
√

1 − µ−1n−2 tanh(r1
√

n2 − µ−1)

and

βµn =

√

1 + µn−2 tanh(r1
√

n2 + µ) − 1
√

1 + µn−2 tanh(r1
√

n2 + µ) + 1
.

Inequality (50) is proved in [1] for fixed r1 and large µ. It still holds under our
assumptions, but the argument is slightly more involved. Set

x = xµn :=
√

1 − µ−1n−2 tanh(r1
√

n2 − µ−1)

y = yµn :=
√

1 + µn−2 tanh(r1
√

n2 + µ)
.

We have to prove that
1 − x

1 + x
<
y − 1

y + 1
, which amounts to xy > 1.

Noting that n ≥ 1, we easily see that, for µ > 4 (and thus, for small δ) we have
√

1 − µ−1n−2
√

1 + µn−2 >
√

1 + µn−2/2, and this for each n ∈ N
∗.

On the other hand, the map tanh is increasing. Since, on the one hand, we have
√

n2 + µ >
n+

√
µ

2
and, on the other hand, for µ > 4/3 and n ≥ 1 we have

√

n2 − µ−1 >
n

2
, we obtain, for large µ, the inequality

xy > z = zµn :=
√

1 + µn−2/2 tanh(r1n/2) tanh(r1(n+
√
µ)/2).

It suffices thus to prove that z > 1 for small δ.

Recalling that r1 = cδ and assumption (H3), we may write
r1
2

=
a lnµ√
µ

, where

a = a(r1) → ∞ as r1 → 0. On the other hand, set b = b(n, µ) =
n√
µ

, so that

n = b
√
µ. Substituting r1/2 and n into the expression of z, we see that we have to

prove that

(51) X = Xµ :=

√

1 +
1

2b2
tanh(a b lnµ) tanh(a b lnµ+ a lnµ) > 1
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provided µ and a are sufficiently large.

We distinguish three cases: (i) b < 1/
√

2 and a b lnµ < 1, (ii) b < 1/
√

2 and

a b lnµ ≥ 1 and (iii) b ≥ 1/
√

2. In what follows, Cj denotes a universal constant.

In case (i), we have:

•
√

1 +
1

2b2
≥ C1

b
;

• tanh(a b lnµ) ≥ C2a b lnµ;
• tanh(a b lnµ+ a lnµ) > tanh(a lnµ).
Thus X > C1C2 a lnµ tanh(a lnµ) > 1 for large a and µ.

In case (ii), we rely on:

•
√

1 +
1

2b2
>

√
2;

• tanh(a b lnµ) ≥ tanh 1;
• tanh(a b lnµ+ a lnµ) > tanh(a lnµ).

Thus X >
√

2 tanh 1 tanh(a lnµ) > 1 for large a and µ (here, we use
√

2 tanh 1 >
1).

In case (iii), we use the inequality

tanh x > 1 − 2

ex
, x > 0

together with:

•
√

1 +
1

2b2
≥ 1 +

C3

b2
• tanh(a b lnµ+ a lnµ) > tanh(a b lnµ).
We obtain

X >

(

1 +
C3

b2

)(

1 − 2

ea b lnµ

)2

>

(

1 +
C3

b2

)(

1 − 4

ea b lnµ

)

> 1 +
C3

b2
− 4

ea b lnµ
− 4C3

b2ea b lnµ

.

Setting c = a lnµ, we have ea b lnµ >
c2b2

2
. Thus, clearly, X > 1 for large c (and

therefore, for large a and µ). �

Step 5. Eλ(u) > 2π for large λ

We follow closely [1]. Let R be such that A is conformally equivalent to A :=
D(0, R) \ D(0, 1/R) and let Φ : A → A be a conformal representation such that
Φ(Γo) = C(0, R) and Φ(Γi) = C(0, 1/R). Set v = u ◦ Φ−1 : Φ(Aδ) → C. In Φ(Aδ),
v satisfies −∆v = λg(x)v(1 − |v|2), where g = Jac Φ−1 is bounded from above and
below (note that g does not depend on δ).

Let α be the constant in (47). We multiply by ln
|z|
R

the equation of v and integrate

over {z ; R − c1δ < |z| < R}. Here, c1 > 0 is fixed sufficiently small in order to
have Φ−1(C(0, R − c1δ)) ⊂ A′

δ,t for some small fixed t. As in [1], we find, with the

help of Lemma 25, Lemma 27 and (47), that, for each a > 0, we have

(52)

∣

∣

∣

∣

∫

C(0,R)

vdℓ− 2πRα

∣

∣

∣

∣

≤ λ−a for small δ;
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a similar estimate holds for

∫

C(0,1/R)

vdℓ. As explained in [1], (52) together with

Lemma 25 imply that we may find for some appropriate β ∈ S
1 such that

(53) Im

(
∫

C(0,R)

βvdℓ

)

= 0

and, for small fixed c2, c3 > 0,
(54)
|1 − βv(z)| ≤ λ−a, |∇(βv)| ≤ λ−a for R− c2δ/ < |z| < R− c3δ and small δ.

Similarly, one may find γ ∈ S
1 such that γv satisfies similar estimates near C(0, 1/R).

We assume henceforth that β = 1. This does not affect the generality, since, if u
minimizes (3), then so does βu.
We set w(r, θ) = v(exp(r+ lnR− 2cδ+ iθ)), 0 ≤ r ≤ 2cδ, 0 ≤ θ ≤ 2π; here, c > 0 is
to be fixed later. As explained in [1], if c is fixed sufficiently small, then (54) implies
that, with small fixed c4, c5 > 0, we have

(55)
1

2

∫

Φ−1({z ; R−c4δ<|z|<R})

(

|∇u|2 +
λ

2
(1 − |u|2)2

)

≥ Fc5λ(w);

here, Fµ is the energy considered in Step 4.
Clearly, w is 2π-periodic in θ and, if we set g(θ) = v(Reiθ), then g has degree 1. On
the other hand, if λ satisfies (H2), then µ := c5λ satisfies (H3). In view of Lemma
28 and of (55), we find that

1

2

∫

Φ−1({z ; R−c4δ<|z|<R})

(

|∇u|2 +
λ

2
(1 − |u|2)2

)

> π

for small δ. Similarly, we have

1

2

∫

Φ−1({z ; 1/R<|z|<1/R+c6δ})

(

|∇u|2 +
λ

2
(1 − |u|2)2

)

> π.

Provided we choose c4, c6 sufficiently small, we have

Φ−1({z ; R− c4δ < |z| < R}) ∩ Φ−1({z ; 1/R < |z| < 1/R+ c6δ}) = ∅.
We find that, for small δ, we have Eλ(u) > 2π. This completes the proof of Theorem
2. �
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