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Abstract. We revisit experimental studies performed by Ek-
man on dead-water (Ekman, 1904) using modern techniques
in order to present new insights on this peculiar phenomenon.
We extend its description to more general situations such
as a three-layer fluid or a linearly stratified fluid in pres-
ence of a pycnocline, showing the robustness of dead-water
phenomenon. We observe large amplitude nonlinear internal
waves which are coupled to the boat dynamics, and we em-
phasize that the modeling of the wave-induced drag requires
more analysis, taking into account nonlinear effects.

Dedicated to Fridtj̈of Nansen born 150 years ago (10 Oc-
tober 1861).

1 Introduction

For sailors, the dead-water phenomenon is a well-known pe-
culiar phenomenon, when a boat evolving on a two-layer
fluid feels an extra drag due to waves being generated at the
interface between the two layers whereas the free surface re-
mains still. Interestingly, one finds reports of similar phe-
nomena in the Latin literature when Tacitus described a flat
sea on which one could not row a boat, North of Scotland
and of Germany, in the Agricola (Tacitus, 98a) and in the
Germania (Tacitus, 98b).

This effect is only observed when the upper part of the
fluid is composed of layers of different densities, due to vari-
ations in salt concentration or temperature. An important
loss of steering power and speed is experienced by the boat,
which can even undergo an oscillatory motion when the mo-
tors are stopped.

In this paper, we present detailed experimental results
on the dead-water phenomenon as shown in the video
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by Vasseur et al. (2008). The material is organized as fol-
lows. In the remaining of this section, we briefly review the
different studies of this phenomenon, either directly related
to Ekman’s work or only partially connected to it. Section 2
presents the experimental set-up. The case of a two-layer
fluid is addressed in Sec. 3, followed by the case with a three-
layer fluid in Sec. 4. The more realistic stratification with a
pycnocline above a linearly stratified fluid is finally discussed
in Sec. 5. Our conclusions, and suggestions for future work
are presented in section 6.

1.1 Ekman’s PhD Thesis

V. W. Ekman was the first researcher to study in de-
tail the origin of the dead-water phenomenon. His work
as a PhD student (Ekman, 1904) was motivated by the
well-documented report from the Norvegian Artic explorer
Fridtjöf Nansen who experienced it while sailing on theFram
near “Nordeskiöld” islands in 1893 (Nansen, 1897).

Several aspects of the phenomenon have been described
by Ekman, who did experiments with different types of boat
evolving on a two-layer fluid. We noteρ1 andh1 the density
and depth of the upper layer, andρ2 andh2 those of the lower
layer.

i) First of all, the drag experienced by the boat evolving on
the stratified fluid is much stronger than the one associated
with an homogeneous fluid. This difference is due to wave
generation at the interface between the two layers of fluid,
pumping energy from the boat. This effect is the strongest
when the boat’s speed is smaller than the maximum wave
speed (Gill, 1982), defined as

cmφ =

√

g
ρ2−ρ1
ρ2

h1h2

h1+h2

, (1)

as can be seen in Fig. 1 where the value ofcmφ is indicated
by the circle. A typical evolution of the drag versus speed
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Fig. 1. Drag-speed relations given by Ekman for a boat dragged on
a layer of fresh water (ρ1 = 1.000 g cm3) of depthh1 = 2.0 cm,
resting above a salt layer (ρ2 =1.030 g cm3), and compared to the
homogeneous case “deep water” with a water level of➀ 23 cm,
and “shallow water” corresponding to a smaller depth➁ 5 cm, and
➂ 2.5 cm (taken from (Fig. 8, Pl. VI Ekman, 1904)). Experimental
points are crosses and continuous lines are models.

obtained by Ekman is shown in this figure. The experimen-
tal points are crosses and are compared to linear theory of
viscous drag in steady state (continuous lines). The local
maximum of the drag for the stratified case is reached for a
speed slightly smaller thancmφ . At high speeds compared to
cmφ , the drag is similar to the quadratic law for homogeneous
fluids, dominated by viscous drag.

This behavior has been reproduced since then, and similar
results were obtained by Miloh et al. (1993) or Vosper et al.
(1999) for instance.

ii) Another contribution of Ekman concerns the descrip-
tion of the interfacial waves generated at the rear of the boat.
Two types of waves, transverse and divergent, could be ob-
served. It must be noted that only interfacial waves can be
easily observed since the surface waves associated are of very
weak amplitude, their amplitude being related to the interfa-
cial waves ones with a ratio equals to (ρa−ρ1)/(ρ2−ρ1)≃
1/500 (whereρa is the density of air). The free surface re-
mains still at the laboratory scale.

These waves are generated by a depression that develops
at the rear of the boat while moving. The transverse waves
can reach large amplitudes up to breaking. But they tend
to disappear when the speed of the boat is greater thancmφ ,
where only divergent waves remain.

Visualizations of these waves from numerical simulations
can also be observed in (Miloh et al., 1993; Yeung and
Nguyen, 1999). Their properties are set by the Froude num-
ber only, which compares the mean speed of the moving ob-
ject tocmφ . This will help us in our description later on.

iii) Furthermore, a solitary wave at the bow of the boat can
also be observed. This structure, a spatially localized bump
is reminiscent of solutions of the Korteweg-DeVries (KdV)
equation: it can evolve freely, conserving its shape when the
boat is stopped. Otherwise, it remains trapped to the boat.

iv) From these observations, Ekman gave an interpretation
of the hysteretic behavior the speed of a boat can experience

when evolving in dead-water. The analysis can be explained
with the help of Fig. 1 showing the drag-speed relation es-
tablished by Ekman from linear theory. If the force moving
the boat increases such that the boat accelerates from rest,
the speed of the boat can jump from6 to 15 cm.s−1 when
the boat overcomes the maximum drag. Similarly, when the
force diminishes such that the boat decelerates from a speed
larger thancmφ , a sudden decrease from11 to 4 cm.s−1 oc-
curs. The range of values between6 and11 cm.s−1 is thus an
unstable branch inaccessible to the system, where dead-water
phenomenon occurs.

However it is important to emphasize that this analysis
implies changing the moving force, hence not imposing a
constant one. This observation is different from another re-
mark made by Ekman which relates explicitly to the appar-
ent unsteady behavior of the boat while towed by a constant
force (Ekman, 1904, p. 67). He observed oscillations of the
speed of the boat that could be of large amplitude compared
to the mean value. He noticed that they occur when the boat
is evolving at speeds smaller thancmφ , while amplitudes and
periods of the oscillations depend on the towing force and the
properties of the stratification. We emphasize here that this
last property is not included in analytical approaches con-
sidering linear waves, such as (Ekman, 1904; Miloh et al.,
1993; Yeung and Nguyen, 1999), and seems to be an impor-
tant characteristic of the dead-water phenomenon.

1.2 Other dead-water related works

Hughes and Grant (1978) took advantage of the dead-water
effect to study the effects of interfacial waves on wind in-
duced surface waves. The study relates the statistical prop-
erties of surface waves to the currents induced by internal
waves.

Maas and van Haren (2006) investigated if the dead-water
effect could also be experienced by swimmers in a thermally
stratified pool, offering a plausible explanation for unex-
plained drownings of experienced swimmers in lakes during
the summer season, but found no effect. One can argue that
the stratification considered might have been inadequate for
swimmers to generate waves and led to mixing of the thermo-
cline mainly. An energetic budget is given in a more detailed
and idealized study (Ganzevles et al., 2009) where the au-
thors also observed some retarding effects on the swimmers.

In a slightly different perspective, Nicolaou et al. (1995)
demonstrated that an object accelerating in a stratified fluid
generates oblique and transverse internal waves, the lat-
ter can be decomposed as a sum of baroclinic modes with
the lowest mode always present. Shishkina (2002) further
showed through experiments that in such a dynamical evo-
lution, the baroclinic modes generated propagate indepen-
dently of each other, although nonlinear effects must become
important when the amplitude of the internal waves is in-
creasing.
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1.3 Steady motion, body moving at constant speed

Finally, numerous studies were focused on bodies evolving
at constant speedwithin a stratified fluid. Some results can
help the understanding of the dead-water experiments, espe-
cially the internal waves at the rear of the boat and the wave-
induced drag on the boat.

In the case of a two-layer fluid, the drag on the boat
is maximal when the Froude number, defined as the ratio
of the boat speedU to the maximum wave speed given in
Eq. (1), is slightly less than 1 (Miloh et al., 1993; Motygin
and Kuznetsov, 1997): this is the subcritical regime. The
structure of the internal waves generated and their coupling
with surface waves confirm that the dead-water regime is due
to baroclinic waves only (Yeung and Nguyen, 1999).

These results obtained in a linear case can be extended
when considering weakly nonlinear effects (Baines, 1995).
Fully nonlinear calculations are needed when the amplitude
of the waves reaches about 0.4 times the depth of the thinner
layer Grue et al. (1997, 1999).

In the case of a linearly stratified fluid, the drag is again
maximal for slightly subcritical values of the Froude num-
ber (Greenslade, 2000). Nevertheless, the internal waves
emitted can be very different depending on the regime con-
sidered for the Froude number (Chomaz et al., 1993), the
location of the object being at the surface (Rottman et al.,
2004) or fully immersed (Hopfinger et al., 1991; Meunier
et al., 2006). It is interesting to emphasize that in experiments
done at constant speed, difficulties are often encountered to
reach a steady state, as noticed by Vosper et al. (1999) for
instance.

Nevertheless, the dead-water phenomenon does not corre-
spond to a constant speed evolution. By imposing a constant
force to move the boat, or using a motor at constant power,
the speed of the boat is free to evolve. The dynamical study
of the problem is thus much richer than in the steady state
case.

2 Experimental setup

Nowadays technologies give us the opportunity to gain more
insight into the interactions between the interfacial waves and
the boat, and improve our knowledge of the dead-water phe-
nomenon. The experimental setup is described in Figure 2.

We drag a plastic Playmobil © boat of width10 cm (and
with a fisherman and fishes to modulate its weight) with a
falling weight in a3-m long plexiglass tank of width10.5 cm
filled with a stratified fluid. A belt with fixed tension is used
to move the boat with a constant horizontal force. The ten-
sion of the belt is set to a constant value throughout all the
experiments. The falling weight of massm fixed to the belt
sets the boat into motion, such that the constant force used is
gravitymg. One must notice that the weights used are paper
clips of few milligrams, since a very small force is requiredto

propel the boat within the interesting regime. A magnet fixed
to the boat is used to release it in a systematic way thanks to
an electro-magnet outside the tank.

z

x-

6

Fig. 2. Experimental setup of a boat dragged by a falling weight.
The vertical force is converted horizontally through pulleys and an
horizontal belt of fixed tension.

2.1 Stratification

Different types of stratification have been used. The density
profiles presented here are obtained using a conductivity and
temperature probe (CT-probe) from PME ©.

1) The two-layer fluid is composed of a layer of fresh wa-
ter (densityρ1) colored with red food dye resting above a
transparent layer of salt water (densityρ2 >ρ1). By siphon-
ing the interface, the density jump extension can be reduced
to a few millimeters but through successive experiments, dif-
fusion and mixing make it widen with time, up to a few cen-
timeters as can be seen in Fig. 3.
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Fig. 3. Density profileρ and Brunt-Väisälä frequencyN for a two-
layer fluid after a series of experiments. The density jump isap-
proximately4 cm wide as observed in the zoomed window close to
the free surface.

ii) The three-layer fluid is obtained similarly, by adding an-
other layer of salt fluid (densityρ3 >ρ2) colored with green
food dye from the bottom.

iii) Finally, a continuously stratified fluid composed of an
homogeneous layer above a linearly stratified part can be ob-
tained from adding a fresh layer after filling the tank with the
classic “two-bucket” method (Hill, 2002). An example of
such stratification with pycnocline is shown in Fig. 4, along
with the Brunt-Väisälä frequency associated with it.
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Fig. 4. Density profileρ and Brunt-Väisälä frequencyN obtained
experimentally in the case of a linear stratification with a pycno-
cline.

2.2 Techniques of image analysis

We record the dynamics of the system (waves + boat) using
a black and white camera. Depending on the stratification
considered, two different techniques are used to extract the
dynamics. For the two and three-layer cases, the different
layers are identified using food dye and the position of the in-
terfacesη(x,t) are extracted from highly contrasted images,
as can be seen in Fig. 5. The boat position with timex(t)
and the free surface evolution are also obtained from these
images. Several hypothesis must be highlighted when deal-
ing with information obtained with this technique, that we
called technique1:

– we consider the interface between two layers as in-
finitely thin,

– we neglect diffusion of salt and dye, which is a slow
phenomenon compared to the experiments (typically a
day versus a few minutes),

– we neglect the small scale evolutions of the interface,
more specifically mixing events.

(a)

(b)
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Fig. 5. (a) Gray scale image during an experiment, converted into a
(b) two-level black and white image with technique 1.

The second technique used, technique2, is based on syn-
thetic schlieren (Dalziel et al., 2000, 2007) and can be real-
ized simultaneously with technique1. By computing corre-
lations between images in the stratified case and a reference
image with homogeneous water, one can measure the com-
plete density gradient and not only the one associated with
the internal waves field. In the domain considered, one can
thus access∂xρ(x,z,t) and∂zρ(x,z,t). In the absence of any
motion, the second quantities have been integrated to mea-
sure the density profile and it was compared successfully to
the one obtained with the CT-probe. Allowing to quantify the
large oscillations of strong density gradient, this technique
has been especially considered in the case of a continuous
stratification with a pycnocline.

We have checked that technique1 gives a good indication
of the position of the interface by recording synchronouslya
two-layer case with both techniques. As can be seen in Fig. 6
where the image (a) is recorded with technique1 and im-
age (b) with technique2, the position of the interface (black
line) extracted from the image (a) follows the main evolution
of the density jump in (b) where the vertical density gradient
is the strongest.

z
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)

x (m)

∂zρ (g cm−4)

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6

−0.1

−0.05
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Fig. 6. Technique 2 for a two-layer fluid experiment: (a) color im-
age (taken with camera) and (b) gray scale image over which is
superposed the vertical gradient of density∂zρ in g cm−4, obtained
using synthetic schlieren with a reference image with homogeneous
water. The black line corresponds to the interface positionextracted
from image (a) and added to image (b) while the pink dashed line is
the free surface.

Although technique2 can be used for all experiments, we
will use technique1 to analyze the two and three-layer cases
since its computational cost is much less.

3 Revisiting Ekman’s work

Our first experimental investigation is dedicated to the two-
layer case, in order to reproduce the results obtained by Ek-
man. The main parameters are summarized in Table 1.
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Parameters symbols values units

Tank dimensions L×H ×W 300× 50× 10.5 cm3

Traction
belt tension T ∼ 0.35 N
force Ft 0.011−0.035 N

Boat
dimensions Lb × hb ×wb 20.0× 5.0× 10.0 cm3

immersed section Sb 12.0−24.0 cm2

mass M 171−343 g

Fluid 1
density ρ1 0.999−1.005 g cm−3

depth h1 2.0−5.0 cm

Fluid 2
density ρ2 1.010−1.030 g cm−3

depth h2 5.0−15.0 cm

mean density ρ̄= ρ2+ρ1
2

∼ 1.01 g cm−3

density jump ∆ρ= ρ2−ρ1
ρ̄

0.01−0.1

maximum phase speed cmφ =
√

∆ρg h1h2

h1+h2
0.03−0.2 m s−1

Froude number Fr= U
cm
φ

0.2−2

Reynolds number Re= Uh1

ν
400−10000

Table 1. Experimental parameters used for the experiments with a two-layer fluid.

3.1 Dynamics of the boat

As can be seen in Table 1, we have used several sets of pa-
rameters in order to verify that the dead-water phenomenon
is indeed a function of the relative density jump∆ρ =
(ρ2−ρ1)/ρ̄, the fresh layer depthh1 compared to the salted
oneh2 along with the waterlinehb on the boat (changing
hb implies a different immersed cross-section and thus a dif-
ferent viscous drag). In the following, we will refer to the
immersed cross-sectionSb for varying geometry of the boat,
and which corresponds towb×hb.

For instance, the dead-water phenomenon is easy to repro-
duce with the following parameters:h1 =5 cm,h2 =14 cm,
hb ≃ 2.4 cm, ∆ρ = 0.0244 and the falling weight corre-
sponding to a forceFt =16.3 mN (also studied in Sec. 3.2,
Fig. 13). The time evolution of the boatx(t) and its corre-
sponding oscillating speedv(t) = dx/dt normalized bycmφ ,
associated with this experiment, are shown in blue in Fig. 7.
A similar case but with a forceFt =18.8 mN (also studied
in Sec. 3.2, Fig. 11) is shown in green in Fig. 7.

Ekman already commented on the fact that the speed can
have large fluctuations|vmax− vmin| ∼ 0.027 m.s−1 com-
pared to its mean value< v >≃ 0.031 m s−1 (blue case),
referring to the capricious nature of the phenomenon. Oscil-
lations of the order of85% of the mean value make it difficult
to interpret the dead-water regime as stationary. The force
imposed to move the boat being constant, such a temporal
evolution implies a time-evolving drag due to the interfacial
waves, and that is due to generation and breaking of waves
at the rear of the boat. This will be confirmed later on when
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x
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)

(a)
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0
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1

1.5

v
(t
)/
cm φ

t (s)

(b)

Fig. 7. (a) Position of the boatx(t) (in m) and (b) its speed com-
pared to the maximum phase speedv(t)/cmφ for experiments re-
vealing the dead-water phenomenon (blue and green) and for an
experiment without oscillation (red).

we present the spatio-temporal diagram associated with the
interface position.

We also show in red in Fig. 7 the time evolution ofx(t) and
v(t)/cmφ for the same parameters exceptFt = 21 mN (also
studied in Sec. 3.2, Fig. 11). Although only reached at the
end of the recording, the boat tends to a steady evolution at
constant speed,vℓ ≃ 0.14 m s−1, after a transient state (for
t≤ 15 s). The comparison between the red and green case
also reveals the sensitivity of the system regarding the drag
force. The temporal evolutions are initially very similar (for
the first five seconds) before behaving differently. For suf-
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Fig. 8. Speed-Force diagram for three stratifications with a fresh
layerh1 being respectively(∗)0.06 m, (◦)0.05 m and(⊳)0.04 m;
with a salt layerh2 = 0.14 m and∆ρ= 0.0247, for a boat con-
figuration beingSb =12 cm2. For the unsteady regime, horizontal
lines are drawn corresponding to the range of values of the speed
in which it fluctuates. The continuous line corresponds to a homo-
geneous case of depth0.15 m. The vertical dashed lines gives the
values ofcmφ associated withh1, (dotted line) 0.10 m s−1, (dash-
dotted line) 0.095 m s−1 and (dashed line) 0.087 m s−1.

ficiently large speeds, the hypothesis of constant velocityof
the boat seems reliable and can lead to a good interpretation
of the evolution of the boat.

Analogously to Ekman’s results presented in Fig. 1, and
in order to compare our results with his, we summarize in
Figs. 8 and. 9 several time evolutions for the different strati-
fications and boat configurations considered in a speed-force
diagram. However, two comments must be made with re-
spect to Ekman’s presentation of his experimental results.
When the boat is in an oscillating regime, Ekman takes the
mean value as its speed and considers that the drag equals
the moving force. This simplified representation of the data
leads to cleaner diagrams although some strong hypotheses
are hidden.

In our case, we consider the moving forceFt instead of
the drag force since both forces are equal only when the boat
evolution is steady. We represent the speed by its mean value
(symbols) and the range of values (lines) in which it fluctu-
ates.

Figure 8 combines the speed-force diagram associated
with three different stratifications and one boat configuration
(Sb =12 cm2), whereas Fig. 9 gathers three boat configura-
tions and one stratification.

These two diagrams are in agreement with the established
results by Ekman that the wave-induced drag increases along
with the fresh water depthh1 when a steady state exists
(Fig. 8), and depends also on the boat geometry (Fig. 9).
As the immersed section of the boat is larger, the drag gets
stronger. The best coupling occurs forhb ≃ h1/2 where the
wave induced drag is maximum and the boat is not deep
enough to generate mixing at the interface. Furthermore,
both diagrams show that when the speed of the boat is os-
cillating, it never reaches values larger thancmφ . It is impor-
tant to notice that the dynamical regime where the velocity
of the boat is closed tocmφ is difficult to scan since the tiniest
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Fig. 9. Speed-Force diagram for three boat configurations,(∗)−
Sb = 12, (⊳)−Sb =18, and(◦)−Sb =24 cm2 in a stratification
with h1 =0.06 m,h2 =0.10 m and∆ρ=0.0145. For the unsteady
regime, horizontal lines are drawn corresponding to the range of
values of the speed in which it fluctuates. The continuous line cor-
responds to a homogeneous case of depth0.15 m withSb =18 cm2.
The vertical dashed line gives the value ofcmφ

change of the moving force leads to a completely different
evolution of the boat. One can thus argue there exists a range
of “unattainable” values for the velocity of the boat, as dis-
cussed in Sec. 1.1, § iv. However, since the moving force
is kept constant in our case, this aspect is different from Ek-
man’s presentation of the phenomenon. Similar comparisons
have been made for the influence of the density jump∆ρ and
the salt layer depthh2 but are not shown here for the sake of
concision.

Finally, several general comments are in order

– the wave-induced drag is always stronger than the one
in homogeneous water (viscous drag only),

– a regime of low velocities exists with a non constant
drag and large fluctuations in the boat speed (no steady
state can be reached),

– this regime is always associated with velocities smaller
thancmφ .

From these remarks, we can discriminate the two regimes de-
scribed previously according to the Froude numberFr which
is defined as the ratio of the speed of the boat (that can be
its mean value<v > or its limit vℓ) to the maximum phase
speed of the interfacial waves. It is important to realize here
that the Froude number is intrinsically a time evolving pa-
rameter, but we will use characteristic values to identify the
regime considered.

We now focus on the waves according to this classifica-
tion.

3.2 Interfacial waves

We present here observations of the interfacial position
η(x,t) generated by the boat in two different frames, the lab-
oratory reference frame and the one moving with the boat.
The latter is not Galilean since the boat does not evolve at
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t
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Fig. 10. Ballistic regime(Fr > 1). Spatio-temporal diagram of
interfacial displacementsη(x,t) (in m). The solid black lines are the
bow and stern of the boat. Experimental parameters:h1 =5.0 cm,
h2 = 14.0 cm, ρ1 = 0.9980 g cm−3, ρ2 = 1.0227 g cm−3, Sb =
24 cm2, Ft =21 mN.

constant speed, but offers a better understanding of the cou-
pled dynamics of the waves with the boat.

Visualizations of the interfacial positions are represented
in spatio-temporal diagrams where elevations of the interface
are in red and depressions in blue (see Figs. 10 and 11 for
instance). The bow and stern of the boat are superimposed
on these diagrams (as black lines).

Depending on the Froude number being larger or smaller
than1, the wave dynamics is very different. We illustrate
each case with an example corresponding to a stratification
with h1 =5.0 cm,h2 =14.0 cm,ρ1 =0.9980 g cm−3, ρ2 =
1.0227 g cm−3, leading tocmφ =0.094 m s−1. The boat used
corresponds to an immersed sectionSb =24 cm2.

3.2.1 In the laboratory frame

Let us first consider the case where a steady state is reached,
illustrated in Fig. 10. With a moving forceFt =21 mN, the
limit speed reached by the boat isvℓ ≃ 0.15 m s−1 which
givesFr= 1.6. In this supercritical case, one can observe
that the boat escapes from the wave train it generates at start-
up. A depression (the blue region) remains attached below
the boat and propagates with it at the speed of the boat. For
times larger than40 s, the boat meets with the end of the tank
and stops (aroundx=2.5m). The depression below it is thus
expelled and propagates in the other direction after reflecting
on the side of the tank. This case is in the ballistic regime.

The oscillating regime, more atypical, with oscillations of
the boat is illustrated in Fig. 11 and corresponds toFt =
18.8mN. The mean speed of the boat is<v>≃ 0.035m s−1,
which gives a Froude number of0.4. As the boat evolves, the
amplitude of the interfacial waves grows up to a maximum
value where the waves catch up with the boat and break on
its hull, aroundt= 20 s. This corresponds to the moment

x (m)

t
(s

)

η(x,t) (m)

Fig. 11. Oscillating regime(Fr < 1). Spatio-temporal diagram of
interfacial displacementsη(x,t) (in m). The solid black lines are the
bow and stern of the boat. Experimental parameters:h1 =5.0 cm,
h2 = 14.0 cm, ρ1 = 0.9980 g cm−3, ρ2 = 1.0227 g cm−3, Sb =
24 cm2, Ft =18.8 mN.

where the drag force is maximal since the boat is almost
standing still. The vessel can speed up again after the first
wave breaks and the same dynamics is reproduced. As noted
earlier, a depression located below the boat evolves with the
boat when it is accelerating. It evolves freely after the boat is
stopped (t> 20 s) and propagates to the right first and to the
left for t > 50 s after reflection at the side of the tank. This
depression even bounces a second time on the left side of the
tank and its shape remains almost unchanged (t> 75 s). Al-
though not presented here, we have verified that this solitary
wave propagating upstream is well described by a Korteweg-
de Vries model since its amplitude is always smaller than
0.4 h1 (Grue et al., 1999). When the boat starts again, the
process is repeated and a new depression is generated.

3.2.2 In the frame of the boat

More information can be obtained when following the dy-
namics in the frame associated with the boat. We are more
specifically interested in what sets the amplitude and fre-
quency of the oscillations of the boat whenFr < 1.

In Fig. 12, we have superposed the interfacial displace-
ments in the frame of the boat (represented as a black rect-
angle) for different times extracted from Fig. 11. We can
observe that the waves get closer to the stern of the boat as
their amplitude grows. This is mainly due to the decrease of
speed of the boat since we can see in Fig. 11 that the wave
crests evolve with a constant speed. The nonlinear nature of
the interfacial waves is also clearly visible as the wave fronts
steepen, the limit of growth being set here by the time when
the waves hit the hull (27< t< 32 s). These downstream fea-
tures are fully nonlinear (amplitudes larger than0.6 h1) and
have similar aspects to observations made in the transcriti-
cal regime by (Melville and Helfrich, 1987) and reproduced
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Fig. 12. Fr < 1. Interface evolutionη(x,t) (in m) from its rest
positionh1 for several times during the slow down of the boat, in
the frame of the boat which is represented by the black rectangular
box. Same parameters as in Fig. 11.

numerically by (Grue et al., 1997), although corresponding
here to waves in a non-galilean frame. It is moreover sur-
prising since as observed on the green curve in Fig. 7, the
Froude number does not exceed 0.7. These observations add
to the comments made previously concerning the inadequacy
of models based on steady object in stratified fluid. Here
again we see upstream the solitary depression below the boat
escaping at the bow as a single oscillation.

For timest≥ 32 s, one can observe that the decapitated
first crest disappears below the boat, the next wave depres-
sion takes position below the boat and the initially second el-
evation of the packet becomes the closest to the stern. Hence,
during an oscillation of the boat, the wave train slides of one
wavelength compared to the boat, repeating itself. No change
in the dominant wavelength of the wave train is visible.

We can now estimate the frequency of the oscillations of
the boat to be

fb =
cg
λ

(2)

with cg the group velocity of the wave train at the rear of the
boat andλ its dominant wavelength, corresponding approxi-
mately to the distance between the first two wave crests.

The experiment presented in Fig. 11 allows an observation
of the steepening process but does not present many oscilla-
tions. In order to confirm the validity of formula (2), we con-
sider another experiment withFt =16.3mN in Fig. 13. From
Fig. 13 (a), one can estimate the frequency of the oscillations
of the boat to befb ∼ 0.07−0.08 Hz. The group speed and
wavelength of the wave train obtained from the diagram in
Fig. 13 (b), corresponds tocg ∼ 0.035− 0.040 m s−1 and
λ∼ 0.5 m. Indeed, we obtaincg/λ∼ 0.07−0.08 Hz show-
ing very good agreement withfb.

After revisiting experiments similar to the ones performed
by Ekman, we have considered new situations. Indeed, dead-
water phenomenon can be studied in more complex (and real-
istic) stratifications, when the fluid has more than two layers
of different densities. We now turn to new experiments with
a three-layer fluid or with a continuously stratified fluid with

10 20 30 40 50 60
0

0.02

0.04

0.06
(a)

v
(t
)

t (s)

x (m) xb (m)

(b) (c)

t
(s

)

η(x,t) (m)

Fig. 13. Oscillating regime(Fr < 1). Panel (a) presents the speed
of the boat versus time, while panels (b) and (c) shows the spatio-
temporal diagrams of the interfacial displacements in the laboratory
frame and in the one of the boat respectively. The black linesrep-
resent the bow and stern. Experimental parameters:h1 = 5.0 cm,
h2 = 14.0 cm, ρ1 = 0.9980 g cm−3, ρ2 = 1.0157 g cm−3, Sb =
24 cm2, Ft =16.3 mN.

a pycnocline, where the complex dynamics has also been ob-
served.

4 Experiments with a three-layer fluid

We consider a three-layer fluid of depthhi and densityρi,
i=1,2,3. Two interfaces must be considered now,ηij(x,t)
corresponding to the interfacial displacements between lay-
ersi andj. A picture summarizes the setup in Fig. 14 and
the main parameters are given in Table 2. Only one given
stratification will be discussed here.

We use technique1 again to extract the positions of the
two interfacesη12 etη23, along with the position of the boat.

4.1 Analytics

Although the three-layer case is a simple extension of the
well documented two-layer one discussed in previous sec-
tion, we here reproduce explicit expressions for the phase
speed of the two eigenmode solutions of this problem,
which can also be find established in the most general form
by Rusås and Grue (2002) or Xiao-Gang and Jin-Bao (2006)
for example.

Perturbations of a three-layer fluid can be described by two
types of harmonic interfacial waves, verifying the dispersion
relation expressed as the following determinant
∣

∣

∣

∣

α1 β
β α2

∣

∣

∣

∣

=0, (3)
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Parameters symbols values units

Fluid 1
density ρ1 0.9967 g cm−3

depth h1 5.0 cm

Fluid 2
density ρ2 1.0079 g cm−3

depth h2 3.0 cm

Fluid 3
density ρ3 1.0201 g cm−3

depth h3 5.5 cm

Interfaceη12
mean density ρ̄12 =

ρ2+ρ1
2

1.0023 g cm−3

density jump ∆ρ12 =
ρ2−ρ1

¯ρ12
0.0112

maximum phase speed cmφ,12 =
√

∆ρ12g
h1h2

h1+h2
0.0147 m s−1

Froude number Fr12 =
U

cm
φ,12

4.1−7.5

Interfaceη23
mean density ρ̄23 =

ρ3+ρ2
2

1.014 g cm−3

density jump ∆ρ23 =
ρ3−ρ2

¯ρ23
0.012

maximum phase speed cmφ,23 =
√

∆ρ23g
h2h3

h2+h3
0.0150 m s−1

Froude number Fr23 =
U

cm
φ,23

4.0−7.3

Modess/a
maximum phase speed cms/a 0.073/0.044 m s−1

Froude number Frs/a =
U

cm
s/a

1.5/2.4−0.6/0.9

Table 2. Experimental parameters used for the experiments with a three-layer fluid.

z

x-

6
ρ1

ρ2
ρ3

η12(x,t)

η23(x,t)

Fig. 14. Picture illustrating the dead-water phenomenon for a three-layer fluid.

with, for i=1,2

αi = g(ρi−ρi+1)+
ω2

k

(

ρi
tanh(khi)

+
ρi+1

tanh(khi+1)

)

, (4)

β = −
ρ2ω

2

k sinh(kh2)
. (5)

The fourth order polynomial inω associated with (3) leads
to two types of interfacial waves. Using the notations in-
troduced in Table 2, and considering the long-wave limit
(tanh(khi)≃ sinh(khi)≃ khi) along with the limit of small
density jumps (∆ρij ≪ ρi,ρj andρi ∼ ρ̄,∀i,j), we can ex-
press the two phase velocities associated with each solution

cms =

[

g
∆ρ12h1(h2+h3)+∆ρ23h3(h1+h2)+∆̃

h1+h2+h3

]1/2

,(6)

cma =

[

g
∆ρ12h1(h2+h3)+∆ρ23h3(h1+h2)−∆̃

h1+h2+h3

]1/2

,(7)

with

∆̃ = g
[

∆ρ212h
2
1(h2+h3)

2+∆ρ223h
2
3(h1+h2)

2

−2∆ρ12∆ρ23h1h2h3(h1+h2+h3−
h1h3

h2

)

]1/2

. (8)

These two phase speeds are associated with symmetric and
anti-symmetric oscillations of the interfaces,

ηs(x,t) =
1

2
(η12(x,t)+η23(x,t)) , (9)

ηa(x,t) =
1

2
(η12(x,t)−η23(x,t)) . (10)

We will refer to mode-s and mode-a for ηs andηa respec-
tively. We also define two Froude numbersFrs/a = v/cms/a
which are the appropriate non-dimensional numbers to de-
limitate the oscillating regime as we will see in the follow-
ing. Numerical values from the experiments are summarized
in Table 2.

To emphasize that the two interfaces cannot be seen as in-
dependent oscillatory structures, since they are coupled by
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Fig. 15. Ballistic regime (Frs > 1). Spatio-temporal diagram of interfacial displacementsηs(x,t) andηa(x,t) (in m). The solid black lines
are the bow and stern of the boat. The magenta (resp. white) dotted line is an indication of the speed of propagation of0.028 m s−1 (resp.
0.0575 m s−1). Experimental parameters are given in Table 2 andSb =24 cm2, Ft =23.5 mN.

the intermediate layer, we give in table 2 the values of the
Froude numbers for the two-layer equivalent solutions,Fr12
andFr23. The values associated with the experiments do not
allow the sub/supercritical classification.

4.2 CaseFrs > 1 and Fra > 1

We first consider the case where the vessel is going faster
than the fastest wave. The experimental parameters associ-
ated with the results shown in Fig. 15 areSb = 24 cm2 and
Ft =23.5mN. The limit speed of the boat isvℓ ≃ 0.11m s−1,
which givesFrs =1.5 andFra =2.4. We only present the
interfacial displacement asηs and ηa because the spatio-
temporal diagrams forη12 andη23 are very similar and do
not clearly exhibit the link between the waves and the boat
dynamics.

Both modes are generated initially but the amplitude of
mode-s is more than two times larger than that of mode-a
which is at the limit of detection. Symmetric oscillations
form a clear wave train whose front propagates at a speed of
0.0575m s−1, while showing a similar spreading of the wave
crests as in the two-layer case: this is an indication of disper-
sion effects. Speed of propagation of mode-a is 0.028 m s−1.

4.3 CaseFrs < 1 and Fra ≃ 1

We now consider a subcritical case. It is however difficult to
define clearly this domain with respect to both modes. The
experimental parameters associated with the results shownin
Fig. 16 areSb =24 cm2 andFt =20.6 mN. The mean speed
of the boat is<v>≃ 0.06 m s−1 which givesFrs =0.6 and
Fra =0.9, with oscillations of the order of0.04 m s−1.

As observed previously, both modes are generated when
the boat starts. Mode-s remains two times larger than mode-
a but they are of noticeable amplitude. The symmetric mode
evolves with the boat and reproduces the amplification and
steepening processes observed in the two-layer case. The
mode-s breaks on the boat when its amplitude is the largest,
and a depression (symmetric for both interfaces) is expelled
at the bow. The characteristics of the mode-s, wavelength
λs ≃ 0.4 m and group velocitycg,s ≃ 0.06 m s−1 lead to an
oscillating frequency of0.15 Hz, too slow for this visualiza-
tion.

Concerning mode-a, its spatial structure is close to a soli-
tary wave train, with a group velocitycg,a ≃ 0.0325 m s−1,
close tocma (being0.044 m s−1). Each time it is generated, a
strong acceleration of the boat occurs.

4.4 Discussion

The unsteady behavior associated with dead-water is still ob-
served in the three-layer fluid, with strong analogy to the
two-layer case. The stratification considered being more
complex, we must consider two baroclinic modes associated
with symmetric and anti-symmetric oscillations of the inter-
faces and that are also referred to as mode-1 and mode-2 in
the literature.

Rusås and Grue (2002) present solutions of the nonlin-
ear equations that have strong similarities with our obser-
vations. More specifically, the spatio-temporal diagram of
mode-a exhibit solitary waves of mode-2 with oscillatory
short mode-1waves superimposed. This is in agreement with
close values of the experiments with the numerical calcula-
tions (Boussinesq limit,h1/h3≃ 1 andh1/h2≃ 1.7).
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Fig. 16. Oscillating regime (Frs < 1). Spatio-temporal diagram of interfacial displacementsηs(x,t) andηa(x,t) (in m). The solid black
lines are the bow and stern of the boat. The magenta (resp. white) dotted line is an indication of the speed of propagation of 0.0325 m s−1

(resp.0.06 m s−1). Experimental parameters are given in in Table 2 andSb =24 cm2, Ft =20.6 mN.

Perturbations generated by the boat give birth to both
modes, especially when the acceleration of the boat is im-
portant. This result is consistent with the study of Nico-
laou et al. (1995), verified experimentally by Robey (1997),
stating that an accelerated object in a continuously stratified
fluid, with a Brunt–Väisälä frequencyN(z), excites a con-
tinuum of modes whose vertical profilew(z) is described by

d2w

dz2
(z)+k2x

(

N2(z)

ω2
−1

)

w(z)= 0, (11)

along with the boundary conditions for the vertical velocity
to be zero at the top and bottom.

Finally, we have observed that the mode-1 is strongly cou-
pled to the dynamics of the boat, which corresponds to the
fastest wave propagating in this stratification. A weak mode-
2 is associated to noticeable acceleration of the boat, but
evolves freely from the other mode.

5 Continuously stratified fluid with a pycnocline

We have observed that several waves are generated when the
boat evolves in a complex stratification. In the case of a lin-
early stratified fluid, an infinite number of modes can propa-
gate. We have actually considered the case of a linearly strat-
ified fluid with a pycnocline (see Fig. 4). Several reasons
can be invoked. It keeps the stratification undisrupted when
the boat evolves in the top layer, it allows larger vertical dis-
placements at the density jump leading to larger amplitudes,
it can be modeled as a coupling between interfacial and in-
ternal waves, and it corresponds to a more realistic setup in
comparison with observations made in natural environment.

Experimental parameters associated with the experiments
presented are in Table 3. We use technique-2 in order to ob-
serve both interfacial oscillations and internal waves.

Similarly to the three-layer case, the complex stratification
considered here allows different definition for the Froude
number. We know from the previous study that the one asso-
ciated with the internal waves and based on the phase speed
of the first vertical mode,Frh = Uπ/Nh, is the adequate
one although its value is actually not so different from the
one obtained from the equivalent two-layer fluid.

5.1 Modal decomposition

As discussed in Sec. 4.4, we expect the non-stationary evolu-
tion of the boat to generate several modes. We anticipate here
by presenting the expected mode structures associated with
the stratification (Fig. 4) and obtained from solving Eq. (11).
From the vertical structure of the vertical component of the
velocity obtained from (11), we can deduce the correspond-
ing density gradients, since

ρ′n(z)= iρ⋆
N(z)2

ω
wn(z), (12)

then

∂xρ
′

n(z)=−ρ⋆
kxN(z)2

ω
wn(z), (13)

whereρ⋆ is a reference densityω the frequency of the mode
andkx its horizontal wavenumber.

Figure 17 gives the vertical profiles (of the horizontal den-
sity gradient) of the first three modesρn for two specific fre-
quencies,ω1 = 0.25 rad s−1 in (a) andω2 =1.1 rad s−1 in
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Parameters symbols values units

Fluid 1
density ρ1 0.9978 g cm−3

depth h1 5.0 cm

Fluid 2
density ρ(z) 1.007−1.028 g cm−3

depth h2 20.0 cm
BV frequency N 0.9 rad s−1

Interfaceη12

mean density ρ̄12 =
ρ2+ρ1

2
1.0024 g cm−3

density jump ∆ρ12 =
ρ2−ρ1

¯ρ12
0.0092

maximum phase speed cmφ,12 =
√

∆ρ12g
h1h2

h1+h2
0.06 m s−1

Froude number Fr12 =
U

cm
φ,12

0.6−2.3

Modes
maximum phase speed Nh

π
0.072 m s−1

Froude number Frh =
Uπ
Nh

0.5−1.9

Table 3. Experimental parameters used for the experiments with a linearly stratified fluid with a pycnocline of depthh= h1+h2.
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Fig. 17. Normalized horizontal density gradient of the first three
vertical modes of stratification in Fig. 4 with (a)ω1 =0.25 rad s−1

and (b)ω2 =1.1 rad s−1.

(b). The former corresponds to a mode propagating in the
total depth of the fluid (sinceω1 <N ) whereas the latter is
trapped in the pycnocline. (ω2 ∈ [0.9;1.8] rad s−1).

The modal decomposition depends on the frequency of
study. In our case, the dead-water phenomenon is a non-
periodic state and we expect perturbations that are not har-
monic modes. However, from previous observations, it is
reasonable to expect nonlinear evolution of modes evolving
freely from the others. Based on this assumption, we expect
the following projection to catch the key features of the dy-
namics.

The computed modes in Fig. 17 will help us identify dom-
inant structures associated with specific frequency bands,but
it is important not to apply too selective time filtering to the
data in order to conserve information about their complex dy-
namics. Thus we extract the mode amplitudesân(x,t) after
the two following steps done at eachx-location:

1. a large band filtering centered aroundω with a band-
width∆ω,

2. a projection of the vertical data onto the selected basis

associated with the frequency band chosenω

ân(x,t)=
1

H

∫ 0

−H

∂xρ
′

n(z).∂xρ
′(x,z,t)dz. (14)

5.2 CaseFrh > 1

The first experiment considered corresponds to the experi-
mental parameters in Table 3 withSb = 12 cm2 andFt =
21.3 mN. The limit speed reached by the boat isvℓ =
0.14 m s−1 which corresponds to a supercritical case (Frh =
1.9).

Figure 18 presents time series of the density gradient ex-
tracted on a vertical cut atx0 = 0.05 m where the origin is
taken at the bow of the boat att= 0. Interfacial displace-
ments obtained from the evolution of the maximum of the
vertical density gradient are given in white and are of less
than0.01 m. The fast evolution of the boat perturbs weakly
the stratification and the signal associated with the internal
waves field, forz ∈ [−0.25,−0.05] m, is weak.

Two types of internal waves can still be discriminated. Os-
cillations of the full water depth are triggered when the boat
passes by att≃ 6 s. Later on, some turbulent fluctuations in
the pycnocline lead to small scales forcing radiating waves
downwards (t∈ [10;20] s). The modal projection leads to no
clear signal whatever the frequency considered and are not
given here.

5.3 CaseFrh < 1

The same configuration is used but with a forceFt =
11.0 mN. The oscillatory dynamics of the boat around a
mean speed< v >≃ 0.036 m s−1 corresponds to a subcrit-
ical case withFrh =0.5.

We represent the time series extracted at the location,
x= 0.67 m (Fig. 19). The vertical cut corresponds to a re-
gion close to where the boat will stop and its speed is al-
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Fig. 18. Frh > 1. Time series of (a)∂zρ(x0,z,t) and (b)
∂xρ(x0,z,t) extracted atx0 =0.5 m, in g/cm4.
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Fig. 19.Frh < 1. Time series of (a)∂zρ(x,z,t) and (b)∂xρ(x,z,t)
extracted atx=0.67 m, in g/cm4.

ready decreasing. The stopping point of the boat is located at
x≃ 1.5 m and occurs att≃ 50 s.

In Fig. 19, the displacements of the pycnocline is of the
order of0.01 m as in the supercritical case. Nevertheless,
the internal waves field is much more intense and the ampli-
tude of the waves generated are larger as the boat evolves,
suggesting the same nonlinear evolution of the waves as for
interfacial waves.

The spatial structure seems to be dominated by a mode-1

(a) (b)

x (m) x (m)

z
(m

)

Fig. 20. Frh < 1. Instantaneous horizontal density gradients
∂xρ(x,z,t0) at times (a)t0 =32 s and (b)t0 =61 s, in g/cm4.

shape close to the boat, which is even more obvious in in-
stantaneous visualizations of the density gradients as shown
in Fig. 20 (a). Other modes are also present in the wave field
but appear later in time and are hard to discriminate from the
radiated waves generated by turbulent patches at the pycno-
cline (Fig. 20 (b)).

In order to quantify in more detail the amplitude of each
generated mode, we project the time series of the vertical
structures extracted at differentx-locations on the modal ba-
sis described before and computed at five different frequen-
cies,ω= [0.25,0.50,0.75,1.0,1.25] rad s−1. Large band fil-
tering in time is done, with∆ω=0.25 rad s−1, so as to keep
track of the nonlinear evolution of the amplitude of the modes
with time. One can observe in Fig. 21 (a) that the ampli-
tude of the mode-1 structure is indeed dominant since it is
emitted for all frequencies considered, whereas the mode-2
in Fig. 21 (b) is of comparable amplitude at the lowest fre-
quencies (ω=0.25 and0.50 rad s−1) but is absent for larger
values ofω. Higher modes (n≥ 3) are even weaker in am-
plitudes and only present at low frequencies (Fig. 21 (c)).

We notice that the initial perturbations for these low modes
are generated below the boat since the black rectangles in
Fig. 21 (a) and (b) are associated with a ramping amplitude
of modes1 and2. The longer the rectangle is, the smaller
the speed of the boat is, leading to larger initial perturbations
which are very similar to what has been observed in the two-
layer case (see Fig. 12).

Furthermore, the apparently cnoı̈dal (sharp crests and flat
troughs) oscillations associated with the mode-1 internal
waves observed in Fig. 21 (a) as the modes propagate, are
a signature of the nonlinear dynamics of the internal waves.
Finally, by giving in all images the maximum phase speed of
the waves with the tilted lines in Fig. 21, we can verify that
the waves crests propagate at a smaller speed than7.2 cm s−1

but it is difficult to extract a constant speed with propagation
for each mode.

5.4 Discussion

The dead-water phenomenon has been observed in the more
general case of a linearly stratified fluid with a pycnocline.
The complex dynamics of the boat is coupled to the first
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Fig. 21. Frh < 1. Amplitudesân(x0,t) with time of the projected
modal structure at severalx0-locations for modesn= 1 (a), 2 (b)
and3 (c) of the horizontal density gradient in arbitrary units. Dif-
ferent colors correspond to different frequencies associated with the
modal basis. The tilted dashed lines corresponds to the charac-
teristic speed of propagationcmφ = 7.2 cm/s. The black rectangle
represents the boat passing through a vertical cross-section at each
x0-location studied.

mode of the stratification with frequencies below the max-
imum value ofN(z).

Although the wave field associated with the subcritical
regime is analogous to the previous layered stratifications
considered, the supercritical regime is different in nature
since it consists mainly of radiated waves from turbulent per-
turbations in the pycnocline. This is similar to observations
of the radiated wave field associated with an object moving
at constant speed in a stratified fluid (Rottman et al., 2004).

6 Conclusions

By revisiting the historical experiments of Ekman’s PhD
Thesis and extending it to more general stratifications, we
have shown the robustness of the dead-water phenomenon.
The experimental techniques used have revealed new insights
on the century-old problem.

One important characteristic of the dead-water phe-
nomenon is that the dynamics of the boat is coupled to the
fastest mode of the stratification considered, although several
modes are generated at each acceleration of the boat. Fur-
thermore, the nonlinear features of the phenomenon must be
considered in order to describe analytically its unsteady na-
ture. Classical models such as presented by Ekman or Miloh
et al. are not sufficient.

It would be of great interest to provide an analytical de-
scription of the coupled dynamics of the boat and the waves
it generates in order to take into account unsteady behaviors.

An extended study of the problem in a three-dimensional
setup is in preparation but we are still developing a collabo-
ration with Playmobil ©.

Acknowledgements.The authors are very thankful to Leo Maas for
introducing the topic of dead-water to them, for many discussions
and for his great knowledge of the historical background. TDthanks
Peter Morgan and Christina Kraus for mentioning similar reports in
the Latin literature.

References

Baines, P. G.: Topographic Effects in Stratified Flows, Cambridge
University Press, 1995.

Chomaz, J. M., Bonneton, P., and Hopfinger, E. J.: The structure
of the near wake of a sphere moving horizontally in a stratified
fluid, Journal of Fluid Mechanics, 254, 1–21, 1993.

Dalziel, S. B., Hughes, G. O., and Sutherland, B. R.: Whole-field
density measurements by ”synthetic Schlieren”, Experiments in
Fluids, 28, 322–335, 2000.

Dalziel, S. B., Carr, M., Sveen, J. K., and Davies, P. A.: Simul-
taneous synthetic schlieren and PIV measurements for internal
solitary waves, Measurement Science and Technology, 18, 533–
547, 2007.

Ekman, V. W.: On dead water. Norw. N. Polar Exped. 1893-1896:
Sci Results, XV, Christiana, Ph.D. thesis, 1904.



: 15

Ganzevles, S. P. M., van Nuland, F. S. W., Maas, L. R. M., and
Toussaint, H. M.: Swimming obstructed by dead-water, Natur-
wissenschaften, 96, 449–456, 2009.

Gill, A. E.: Atmosphere-Ocean Dynamics, in: Atmosphere-Ocean
Dynamics, Academic Press (London), 1982.

Greenslade, M. D.: Drag on a sphere moving horizontally in a strat-
ified fluid, Journal of Fluid Mechanics, 418, 339–350, 2000.

Grue, J., Friis, H. A., Palm, E., and Rusås, P. O.: A method for
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Rusås, P. O. and Grue, J.: Solitary waves and conjugate flowsin a
three-layer fluid, European Journal of Fluid Mechanics B/Fluids,
21, 185–206, 2002.

Shishkina, O. D.: Experimental investigation of the generation of
internal waves by a vertical cylinder in a near-surface pycnocline,
Fluid Dynamics, 37, 931–938, 2002.

Tacitus: Agricola, 10, 98a.
Tacitus: Germania, 45.1, 98b.
Vasseur, R., Mercier, M., and Dauxois, T.: Dead Waters: Large

amplitude interfacial waves generated by a boat in a stratified
fluid, APS DFD Meeting, Gallery of Fluid Motion, http://hdl.

handle.net/1813/11470, 2008.
Vosper, S. B., Castro, L. P., Snyder, W. H., and Mobbs, S. D.: Exper-

imental studies of strongly stratified flow past three-dimensional
orography, Journal of Fluid Mechanics, 390, 223–249, 1999.

Xiao-Gang, C. and Jin-Bao, S.: Second-order random wave solu-
tions for interfacial internal waves inN -layer density-stratified
fluid, Chinese Physics, 15, 756–766, 2006.

Yeung, R. W. and Nguyen, T. C.: Waves generated by a moving
source in a two-layer ocean of finite depth, Journal of Engineer-
ing Mathematics, 35, 85–107, 1999.

http://hdl.handle.net/1813/11470

