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When a massive star explodes as a supernova, substantial amounts of radioactive elements—

primarily 56Ni, 57Ni and 44Ti—are produced1. After the initial flash of light from shock heat-

ing, the fading light emitted by the supernova is due to the decay of these elements2. However,

after decades, the energy for a supernova remnant comes fromthe shock interaction between

the ejecta and the surrounding medium3. The transition to this phase has hitherto not been
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observed: supernovae occur too infrequently in the Milky Way to provide a young example,

and extragalactic supernovae are generally too faint and too small. Here we report obser-

vations that show this transition in the supernova SN 1987A in the Large Magellanic Cloud.

From 1994 to 2001 the ejecta faded owing to radioactive decayof 44Ti as predicted. Then the

flux started to increase, more than doubling by the end of 2009. We show that this increase is

the result of heat deposited by X-rays produced as the ejectainteracts with the surrounding

material. In time, the X-rays will penetrate farther into th e ejecta, enabling us to analyse the

structure and chemistry of the vanished star.

Due to the proximity of SN 1987A (located only160, 000 light years away), we can study

the evolution of the supernova (SN) in great detail. The central ejecta are surrounded by a ring

of circumstellar material (Fig. 1) that was shed from the star 20, 000 years before the explosion in

19874. Since the explosion, the ejecta have been expanding, and now the outer parts of the ejecta

are colliding with the ring, causing it to brighten at all wavelengths5–8. The dense, central part

of the ejecta contains most of the mass from the disrupted star and acts as a calorimeter for the

energy input to the SN. We have determined the energy input bytracking the energy output with

the Hubble Space Telescope (HST).

Because the ejecta are roughly elliptical in projection on the sky we use an elliptical aperture

to measure the brightness. To monitor a constant mass of expanding material, we allowed the

measuring aperture to expand linearly with time. The axes ofthe aperture were therefore three

times larger in 2009 than in 1994 (Fig. 1). Using this aperture, we determined the R-and and B-
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band light curves of the ejecta, as shown in Fig. 2 (see Supplementary Table 1 and Supplementary

Information, section 1 for further details of the observations and light curves). Our measurements

show that the flux from the ejecta decays during the first∼ 5, 000 days after the explosion, as

expected from radioactive input, but then starts to increase, reaching a level that is 2-3 times higher

around day8, 000 (end of 2009). A new energy source must be present in additionto radioactive

decay. Below, we consider a model for the declining phase andthen discuss the new energy source

that is responsible for the observed increase in flux.

The energy input to the declining phase of the light curve after ∼ 1, 500 days is expected

to come from positrons produced in the decay of44Ti2, 9, 10. To test this we use a model2 with

abundances taken from the 14E1 explosion model11 and a44Ti mass of1.4 × 10−4 M⊙
12 (Sup-

plementary Information, section 3). The model is shown in Fig. 3 together with the observed

broadband luminosities. The good agreement with the observations up to day5, 000 confirms that

the 44Ti positrons provide the energy input up to this point. However, after day5, 000 the model

clearly fails to describe the light curve; radioactive decay cannot explain the increase in flux that

we observe.

One possible origin for the flux increase is the reverse shockthat results from the interaction

between the ejecta and the H II region inside the ring13–16. The reverse shock produces strong Lyα

and Hα emission, which increased by a factor of∼ 1.7 between 2004 and 201016. Although most

of this emission originates close to the ring, there is also acomponent of projected high-velocity

Hα-emission that can be traced to the central parts of the ejecta16 and which would therefore
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contribute to the flux we measure. To determine the contribution of the reverse shock to our light

curves we have examined HST STIS spectra from 2004 and 2010 (Supplementary Information,

section 2 and Supplementary Fig. 5). The reverse shock can beisolated in the spectra because of

its boxy line profile, allowing us to place a limit on its contribution at∼< 20%. Furthermore, this

changes only marginally between 2004 and 2010, as the expanding measuring aperture remains

well inside the area where most of the shock emission is seen.Importantly, an increase in flux

is also seen in the [Ca II] doublet lines at rest wavelengths 7,292Å and 7,324Å between 2000 –

2010 (determined from UVES observations at the ESO/VLT, Fig. 2). These lines have speeds of

∼< 5, 000 km s−1, implying that they originate in the inner ejecta (the projected ejecta speed near

the edge of the ring is∼> 7, 000 km s−1 at the present time). We conclude that the increase in flux

occurs primarily in the inner ejecta and cannot be explainedby emission from the shock region.

We believe that the strong X-ray flux produced in the ring collision is the dominant source

of energy input to the ejecta. The X-ray flux from the ring increased by a factor∼ 3 in the 0.5 –

10 keV band between day6, 000 and day8, 0006, similar to what we find for the optical emission

from the ejecta. To investigate this, we calculated the fraction of X-rays absorbed by the ejecta from

a point source located at the ring, using the partially mixed14E1 explosion model17. As shown in

Supplementary Fig. 6, most of the observed X-ray flux is absorbed in the core region of the ejecta

(corresponding to speeds less than5, 000 km s−1), where most of the heavy elements reside. At

an energy of∼ 0.35 keV, which corresponds to the temperature of the dominant component in the

X-ray spectrum18, the fraction of flux absorbed by the ejecta attyr years can be approximated by

1.6× 10−3t1.67yr (the increase with time is mainly due to the increasing solidangle of the expanding
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ejecta, assumed to be spherical, as seen from the ring). Thisgives a present-day absorbed X-

ray luminosity of∼ 5.0 × 1035erg s−1. In this calculation we have neglected the weaker, hard

component that contributes to the X-ray spectrum18. We note that this does not significantly affect

the estimate of the absorbed flux, although the hard X-rays may be important due to their larger

penetrating power.

To model the ejecta light curve produced by input from the X-rays we scaled the observed

X-ray flux6 by the fraction absorbed at 0.35 keV, multiplied the resulting flux with a constant

(corresponding to the conversion efficiency from X-rays to optical) and added this to the radioactive

energy input. Fig. 3 shows the scaled X-ray flux together withthe observed light curves. This

model follows the general trend of the observed fluxes in bothbands, although we note that a more

accurate model would need to take into account the detailed shape of the X-ray spectrum and the

reprocessing of the X-rays into optical emission. The required conversion efficiency from X-rays

to optical emission in our model is5.0% in the R-band and3.1% in the B-band.

The conversion of X-rays to optical/IR emission is similar to that of the44Ti positrons. Both

involve degradation of non-thermal electrons to heating, ionization and excitation. For a typical

ionization fraction of10−3 − 10−2, the expected efficiency of conversion from X-rays to Hα (the

dominant line in the R-band) is∼ 5% (Supplementary Information, section 3). This conversion

factor is consistent with the scaling factor we used to modelthe light curve. Similar arguments

apply to the B-band. Furthermore, the density in the core is high enough for the time-scale of

recombination to be shorter than the expansion time-scale,ensuring a balance between the energy
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input and output.

Other possible explanations for the increase in flux includeinput from a central pulsar19, a

transition from optically thick to optically thin dust and positron leakage from the Fe-rich regions.

We find that input from a pulsar is unlikely for several reasons. In particular, it would be a strange

coincidence for the emission from the pulsar to mimic the increasing X-ray flux from the ring

interaction. Also, we expect the energy input from a pulsar to be concentrated toward the low-

velocity material at the centre of the ejecta, but observations of the Hα and [Ca II] lines show

that the increase occurs for speeds up to∼ 5, 000 km s−1. We also note that constraints on a

point source at the centre of SN 1987A have already been obtained using HST data taken near the

minimum of the ejecta light curve20. A change in the properties of the dust or a transition in the

positron deposition process are also unable to quantitatively explain the observed increase in flux

(Supplementary Information, section 4).

We conclude that SN 1987A has made a transition from a radioactively dominated phase

to a phase dominated by the X-ray input from the ring collision. This conclusion has interesting

implications for the observed morphology. In particular, most of the X-rays are likely to be ab-

sorbed at the boundary of the ejecta core, where the density increases rapidly. This may lead to the

light from the ejecta being emitted in a ring that is concentrated to the plane of the circumstellar

ring. The ’hole’ in the ejecta (Fig. 1), which has become morepronounced since∼ 2001, may in

fact be a result of this, rather than reflecting the true density distribution or dust obscuration. The

asymmetric morphology seen at speeds of∼< 3, 000 km s−1 in the near-IR [Si I] and [Fe II] lines21
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is, however, likely to be intrinsic to the metal core. By studying future changes in the morphology

of the ejecta, we will be able to understand the origin of thisasymmetry

In the future the density of the ejecta will decrease and the fraction of X-rays absorbed will

grow (Supplementary Fig. 7). As a result the ionization willincrease and a smaller fraction of

the X-ray flux will produce line excitation. A larger fraction will go into heating, leading to an

increase in the mid-IR flux and a flattening of the optical light curves. In time, the X-rays will also

penetrate deeper layers of the ejecta, thereby allowing us to probe the chemical structure of the

innermost ejecta. This will be a novel form of X-ray tomography.
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Figures

a b c

Figure 1: A selection of HST R-band images. The observing dates are 1994-09-24 (a), 2000-11-

13 (b) and 2009-04-29 (c), which correspond to 2,770, 5,012 and 8,101 days after the explosion,

respectively. The scale bar inc represents 1′′. The circumstellar ring is inclined at an angle of45◦

with respect to the line of sight and is approximately 1.3 light years across. The red (inner) ellipse

shows the expanding aperture used for the light curve in Fig.2. By using an initial semi-major

axis of 0.11′′ for the observation in 1994 we always follow the bright, central part of the ejecta

without being significantly affected by emission from the circumstellar ring. The white (outer)

ellipse shows the fixed aperture used for one of the light curves in Supplementary Fig. 2. The

R-band emission from the ejecta is dominated by Hα emission with a small contribution from [Ca

I-II] lines, whereas the B-band (Supplementary Fig. 1) is dominated by H I and Fe I-II lines12, 22.

Only the densest, central parts of the ejecta are visible dueto the low surface brightness of the

outer parts. In reality, the ejecta extend to the ring, as is evident from the strong interaction with

the ring.

14



3,000 4,000 5,000 6,000 7,000 8,000
0

1

2

3

4

5

6

7

Time after explosion (days)

F
lu

x 
(1

0-1
4  e

rg
 c

m
-2

 s
-1

)

Figure 2: Light curves of the ejecta in different wavebands.Data points from WFPC2, ACS and

WFC3 are shown as dots, triangles and stars, respectively. Red and blue symbols correspond to

the R- and B-bands. A correction factor has been applied to the ACS and WFC3 fluxes in order to

account for the differences between these instruments and WFPC2. To quantify the contamination

from the brightening circumstellar ring we created detailed models of the ring for a number of dif-

ferent epochs (Supplementary Information, section 1, and Supplementary Figs. 3 and 4). The open

symbols show the ejecta fluxes after the contribution from the ring has been removed. Although

the contamination from the ring increases with time it neverexceeds∼ 20% of the flux from the

ejecta. The statistical errors on the HST fluxes are smaller than the data points and systematic

errors are discussed in the Supplementary Information, section 1. The black squares show the

flux of the [Ca II]λλ7291.5, 7323.9 lines from VLT/UVES (error bars, s.d.). These lines are free

from contamination from the circumstellar ring and the reverse shock. We note the decreasing flux

during the first∼ 5, 000 days and the increase thereafter, indicating an extra source of energy. A

further indication that the energy source has changed is that the colour, determined from the flux

ratio between the B-and R-bands, changes from a level of∼ 0.8 up to day5, 000 to a value close

to∼ 0.6 on day8, 000.
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Figure 3: Evolution of the luminosity from the ejecta in the R- and B-bands. The dashed black

lines show a model with only radioactive input, mainly from44Ti. The 44Ti mass used for the

model is1.4× 10−4 M⊙
12, as determined from a detailed model that takes into accountthe effects

of scattering and fluorescence of the UV flux, as well as a correction for internal dust (here taken

to have a 50% covering factor of the core inside 2000 km s−1)23, 24. The lower dot-dashed lines

show the light curves with no44Ti, illustrating the necessity to include this isotope. Thered dashed

lines show a model based on a constant fraction of the observed X-ray flux6, corrected for the

fraction of flux absorbed by the ejecta (Supplementary Fig. 7). The blue solid line shows the sum

of both models. The R- and B-bands contain 5% and 3% of the total bolometric flux, respectively,

and we expect these fractions to remain roughly constant with time. This is because the relative

amount of energy resulting in heating, ionization and excitation will remain nearly constant as long

as the ionization by the X-rays is∼< 10−2. It is clear from this figure that there is a transition at

∼ 5, 000 days from a radioactivity dominated phase to a phase dominated by the X-ray input from

the collision with the ring.
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Supplementary information

1 Photometry

Our analysis includes all HST imaging observations performed between 1994 and 2009 in the the

red (WFPC2/F675W, ACS/F625W and WFC3/F675W) and blue (WFPC2/F439W, ACS/F435W

and WFC3/F438W) broad-band filters (the two groups of filterswill be referred to as the R- and

B-bands from here on). The images were drizzled to combine dithered exposures and to remove

cosmic rays. Details of the observations are given in Supplementary Table 1 and a selection of

images are shown in Supplementary Fig. 1. The images show theexpansion of the asymmetric

ejecta and the brightening hot spots in the circumstellar ring.

We measured the brightness of the ejecta as a function of timeusing the IRAF/STSDAS

task ELLIPSE, using different elliptical and circular apertures described below. The measure-

ments give mean flux densities, which we convert into total fluxes by multiplying with the rect-

angular bandwidth of the different filters. When convertingto total fluxes we also correct for

the fact that there are some differences between the filters used for the three instruments. To

determine the corrections we used the HST FOS spectrum from 199722 (this covers the entire

spectral range probed by all the filters) and used the SYNPHOTpackage to calculate flux den-

sities in the different filters. After converting to total fluxes we obtain the following flux ra-

tios: (ACS/F625W) / (WFPC2/F675W)= 1.08, (WFC3/F625W) / (WFPC2/F675W)= 1.16,

1
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(ACS/F435W) / (WFPC2/F439W)= 1.27 and (WFC3/F438W) / (WFPC2/F439W)= 1.06. In

all the light curves that we show we have corrected the ACS andWFC3 fluxes in accordance with

this. A small offset still remains (see e.g. Fig. 2), which may be due to charge transfer efficiency

losses in WFPC2 (see discussion below). Changes in the spectral energy distribution (SED) would

also have some effect on the conversion factors, although wenote that observations22,25 suggest

that the SED does not vary significantly with time.

For each of the observations we also determined the sky brightness using the IRAF/FITSKY

routine. Specifically, we determined the centroid sky valuein five empty regions located around

SN 1987A and then used the average of these measurements to subtract the sky background from

the light curve. The background is typically only a few per cent of the intrinsic ejecta brightness.

We also considered the possibility of contamination from the two bright stars that are located to

the north-east and south-west of SN 1987A. These stars have strong diffraction spikes from the

secondary-mirror spiders, which may pass through the ejecta depending on the HST roll angle. We

inspected all the images and found that there is only one observation (2006-04-15) where there

is a strong spike passing through our apertures. We estimated the contribution from this spike

by measuring the brightness of the other spikes from the samestar, and corrected the light curves

accordingly. Another source of contamination is one of the narrow outer rings of SN 1987A, which

is partly projected on top of the ejecta. However, the small,decreasing flux26 of this component is

negligible compared to the emission from the ejecta.

The shape of the ejecta is roughly elliptical so as a first stepwe used an elliptical aperture
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to measure the evolution of the flux. The shape of the ellipse was determined by fitting elliptical

isophotes to the ejecta region in the observation from 2000-11-13. This epoch was chosen because

it is long enough after the explosion that the ejecta shape isclearly discernible, while still early

enough for the edge of the inner ejecta to be clearly separated from the circumstellar ring. The fits

were performed using the IRAF/STSDAS task ELLIPSE. Settingthe semi-major axis (sma) to0.2′′

(the size used for the light curve in Fig. 2 for this epoch) we find a position angle of17.4 ± 0.1◦

and an eccentricity of0.684±0.002. This can be compared with previous measurements with HST

(P.A.= 14 ± 5◦)27 and VLT/SINFONI (P.A.= 15 ± 0.9◦, e = 0.83, from the1.644 µm Si I/Fe II

feature)21. The agreement with the position angle is clearly good and, given that the SINFONI

measurements probe the Si/Fe core and the R-band is dominated by the H-rich gas, the agreement

with the eccentricity is also reasonable. As described in the main paper, the light curves presented

in Fig. 2 were derived using this elliptical aperture. The size of the aperture was expanded as a

function of time in order to always follow the same ejecta material.

In order to make sure that the transition from a decaying to a rising flux seen in Fig. 2 is

not connected to the use of this particular aperture, we alsoperformed the measurements using

apertures with other shapes and sizes, trying both apertures that have a fixed size and apertures

that expand with the ejecta. Supplementary Fig. 2 shows the R- and B-band light curves for the

same expanding elliptical aperture as in Fig. 2, an expanding circular aperture (with radius equal

to the sma of the elliptical aperture) as well as a large, fixedaperture. The fixed aperture encloses

most of the ejecta but still avoids direct contamination by the ring (the aperture is shown in Fig. 1).

The light curves extracted from the expanding elliptical and circular apertures show very similar
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behaviour, demonstrating that the exact shape of the aperture is not important. The light curve from

the large, fixed aperture also shows the same behaviour during the first∼ 7,000 days, but levels off

at late times. This is at least partly due to ejecta material expanding out of the fixed aperture. The

large aperture is also likely to be significantly affected bycontamination from the circumstellar

ring, making it hard to draw firm conclusions regarding the ejecta using this aperture.

Contamination from the ring (due to flux from the brighteningring spilling into the ejecta

region) is likely to affect all our light curves at some level. In order to quantify this effect we

used the HST point-spread-function modelling tool Tiny Tim28 and created models for the ring

for a number of different epochs in both bands. We set up the models to match the observed

distribution of hot spots as closely as possible and to have the same total flux in the ring area as the

observations. The modelling is illustrated in Supplementary Fig. 3, which shows the real data and

the model for the F675W image from 2009-04-29, and in Supplementary Fig. 4, which compares

the radial profiles of the data and the model. The corrected light curves derived using these models

are shown as open symbols in Fig. 2 and Supplementary Fig. 2. The contribution from the ring

increases with time and is larger in the R-band, but it does not have a major effect on the light

curves from the expanding apertures. For the large, fixed aperture the contamination is much more

severe, reaching about 50% of the total flux at late times in the R-band.

The modelling of the ring is naturally associated with some uncertainties. In order to quantify

these uncertainties we performed two different tests. First, we investigated the effect of varying the

number of points sources used to model the ring. Specifically, we created models using between
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8 and 90 point sources distributed along the ring, while always keeping the total flux in the ring

area constant. The different ring models resulted in fluxes in the ejecta apertures that agreed to

within 15%. This demonstrates that the specific model for thering is not very important as long

as the same total flux is distributed in an ellipse around the ejecta. The main reason for this is of

course that we are interested in the total flux that leaks intothe ejecta region and not its detailed

distribution.

Another test of the models is to compare the flux in the synthetic and real images in regions

located just outside the circumstellar ring. We used clean regions (uncontaminated by stars and

other sources of emission) that allow us to measure the flux inthe wings of the point sources

in the ring. For the observation from 2009-04-29 we find that the agreement is excellent (the

discrepancy is less than 10%), which gives us confidence thatthe models provide a good estimate

of the emission from the ring. For earlier epochs it is harderto evaluate the models in this way

since the clean regions outside the ring are completely dominated by the sky background rather

than ring emission. For this reason we cannot determine whether our models are equally accurate

at early times. We note, however, that the flux from the ring isnegligible at these times.

An additional source of uncertainty is the loss of Charge Transfer Efficiency (CTE). This

effect is known to increase with time and is especially important for faint objects on low back-

grounds located far from the detector readout29. To investigate the importance of CTE losses we

performed aperture photometry on about 10 stars of varying brightness located around SN 1987A.

We found that the effect is negligible in the ACS but clearly noticeable in WFPC2, where stars lose
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at most∼ 10% of their flux between 1994 and 2009. This also agrees with estimates obtained for

the supernova ejecta using the WFPC2 CTE correction formula29. In terms of the light curve in

Fig. 2, we note that a∼ 10% increase in the WFPC2 data points at late times would improvethe

agreement between the ACS and WFPC2.

2 Spectroscopy

As a complement to the photometry we investigate HST STIS spectra taken with the G750L grating

in 2004 and 2010. These spectra overlap with the wavelength region covered by the R-filters and

give us an opportunity to study the different spectral components that may contribute to the increase

in flux. In both observations a slit with a width of 0.2′′ was placed in the north-south direction,

centred on the ejecta16,30. In 2004 there were also two observations taken with the narrow slit

placed on either side of the central slit. To allow for a comparison with the photometry we extracted

spectra in regions that match the size of the expanding elliptical aperture as closely as possible.

This means using the central slit only and an extraction height of ±0.24′′ in 2004 and±0.31′′ in

2010.

Supplementary Fig. 5 shows the Hα profiles from 2004 and 2010. The line profiles are

clearly asymmetric with a strong blue wing extending down to∼ −5, 000 km s−1 and a red wing

that only reaches velocities of about∼ 2, 500 km s−1. The constant width of the ejecta line profile

shows that the expanding aperture that we used follows the same material over a 6-year span of
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time. From the two-dimensional spectra16,30 it is clear that the blue wing mainly comes from the

northern part of the ejecta. The lack of a correspondingly strong red wing may be due to dust

absorption in the far side of the ejecta. Supplementary Fig.5 also shows that the increase in flux

between 2004 and 2010 is mainly due to an increase in the blue wing of the ejecta profile.

The Hα emission also contains a small contribution from the reverse shock. This component

is clearly visible on the red side of the line as the boxy part of the profile between∼ 3, 000 −

9, 000 km s−1. On the blue side of the line the reverse shock appears at velocities higher than

∼ −9, 000 km s−1, where it is blended with the broad [O I]λλ 6300, 6364 lines from the ejecta at

−12, 022 km s−1 and−9, 096 km s−1. To estimate the flux from the reverse shock we focus on the

boxy part of the profile on the red side, since this is not blended with any other strong lines. The

contribution from this component compared to the total flux in the R-band is∼ 9 − 10% in both

2004 and 2010. It is clear from inspection of the spectra thatthe reverse shock is not as strong on

the blue side, and a very conservative upper limit on the total contribution from the reverse shock is

therefore∼ 20%. We especially note that there is no significant increase between 2004 and 2010.

In Supplementary Fig. 5 we also show the spectrum obtained bycombining the three slit

positions from the 2004 observations, renormalized to the continuum of the other spectra. The

combined spectrum is very similar to that from the central slit, albeit with a slightly stronger line

core and red wing. The contribution from the reverse shock onthe red side is∼ 11%, i.e. only

marginally larger than the values given above.

The STIS observation from 2010 also allows us to investigatethe emission from the south-
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ernmost part of the ejecta, which is seen outside both the expanding and the fixed aperture at late

times (Fig. 1). STIS spectra extracted in this region show a significant contribution from the re-

verse shock but also an asymmetric line profile from the ejecta, with a strong blue wing extending

down to∼ −2, 000 km s−1. The fact that we see blueshifted emission from the southernpart of

the ejecta shows that there must be some ejecta material located well above the plane of the ring.

The [Ca II] observations in Fig. 2 were performed between 2000 and 2009 with the Very

Large Telescope (VLT) at ESO, using the UVES instrument. Theprimary purpose of these obser-

vations was to follow the evolution of the narrow lines from the ring collision. To maximise the

spectral resolution and to minimise contamination from nearby stars a comparatively narrow slit,

0.8 ′′ wide, was chosen. The seeing was in most cases 0.6 – 0.8′′, which is just enough to spatially

resolve the ring into a northern and a southern part. The slitwas centred on the position of the

supernova and had a position angle of 30◦ in all the observations. The observations were reduced

with the standard pipeline and the errors on the absolute fluxes were estimated to be less than 20 –

30% (ref. 5).

3 Modelling of the light curve

At first, the energy radiated by a SN comes from the shock wave arriving at the surface of the

exploding star. This phase lasted lasted only a few hours in SN 1987A, and was followed by a

period of a few weeks where the light curve was powered by the diffusive release of the internal
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energy produced by the shock wave17. Subsequently, the energy for emission was supplied by

the decay of radioactive isotopes created in the explosion.During the first∼ 1, 000 days the

radioactive input was dominated by56Ni, decaying into56Co and56Fe. From the first two years

of the bolometric light curve the mass of56Ni could be determined to0.069 M⊙
31. After ∼ 1, 000

days57Ni took over and a mass of3×10−3 M⊙ was found32–34. Finally, after∼ 1, 600 days the next

most abundant isotope,44Ti, has been predicted to dominate the energy input to the ejecta. While

the bolometric light curve could be accurately determined up to∼ 1, 000 days, the dominance of

the mid-IR, which is difficult to determine from observations, requires accurate modelling of the

optical bands at later times. In addition, the hydrogen-rich parts of the ejecta are subject to a freeze-

out34, where recombination and cooling become slow compared to the radioactive decay time-

scales and the expansion time-scales. It is therefore necessary to use a time-dependent approach

for the modelling.

The modelling of the radioactively powered part of the lightcurves in Fig. 3 is based on a

time-dependent spectral code35, 36. The code includes calculations of the non-thermal excitation

and ionization by the gamma-rays and positrons from the radioactive decay of56Ni, 57Ni and44Ti,

as well as a full non-local thermodynamic equilibrium treatment of the most important elements

and lines. The present version also includes updated atomicdata, in particular more accurate

collision rates for Fe II, and other ions. The radiative transfer uses the Sobolev approximation,

which treats the line escape in individual lines accurately. However, the non-local scattering from

line to line is not included (except for the Ca II H and K lines,which feed the [Ca II]λλ7291.5,

7323.9 lines by fluorescence). This especially affects the UV and blue parts of the spectrum and
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leads to an underestimate of the flux in the B-band12.

An important test is that this model accurately reproduces the Hα evolution up to day 3,600

(ref. 2). A comparison with the spectrum at 7.8 years22 shows agreement to within 50% for the

R-band, but the model underestimates the flux in the B-band bya factor of 2.5. To model the shape

of the light curves we therefore renormalize the B-band fluxes by a factor 2.5 and the R-band by

a factor 1.5. The total energy input from radioactivity can be estimated to∼ 1.2 × 1036erg s−1

at 20 years12. In addition to this there is a substantial contribution from delayed recombination

(freeze-out). This comes primarily from the low-density hydrogen envelope and is seen mainly as

Balmer emission. The decrease of this component is substantially faster than the44Ti decay and is

responsible for the fast decline seen before∼ 4, 000 days (Fig. 3).

When translating the broad-band fluxes to luminosities we assume a distance of 50 kpc and a

reddening of EB−V = 0.16 mag37. For the comparison with the observations we use the light curve

from the expanding elliptical aperture, multiplied by a constant factor for the R- and B-bands. The

reason for using this, rather than the fixed aperture in Fig. 1, is that the latter shows a misleading

flattening at epochs later than∼ 7, 000 days because of the expansion of part of the ejecta outside

the aperture. The constant factors were determined as an average of the ratio of the flux in the fixed

aperture to that of the expanding aperture for epochs earlier than7, 000 days. The constants are 2.6

for the R-band and 2.5 for the B-band. There is of course some uncertainty in the correction from

the expanding aperture to the total emitted flux, which also affects the44Ti mass.

To determine the X-ray input to the ejecta we calculated the photoelectric absorption along
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different rays in the ejecta from a point source located at the radius of the circumstellar ring. For

the abundance and density distributions we used the partially mixed 14E1 explosion model17. This

model is spherically symmetric (although mixed). Unfortunately, no 2-D or 3-D simulations exist

with appropriate nucleosynthesis. The spherical approximation should, however, be sufficient for

the qualitative nature of the model. Most of the envelope is transparent to X-rays with energies

above about 0.2 keV as seen in Supplementary Fig. 6, which shows the ejecta expansion velocity

for optical depthτ = 1 as a function of photon energy. The high metallicity core dominates the

opacity by K- and L-shell absorption by oxygen and other elements, and is opaque at all but the

very highest energies.

The energy deposition is an angular average of the absorbed intensity over all directions

of the core and envelope, shown in Supplementary Fig. 7 for four different photon energies.

The different deposition curves can be well approximated byC(E) × 10−3t1.67yr , whereC(E) =

(4.5, 1.6, 0.7)× 10−3 for E = 0.1, 0.35, and 1 keV, respectively. The general time dependence can

be explained as a balance between the increase of the solid angle of the core as seen from the ring,

∝ t2, and the increasing transparency of the ejecta as the density decreases.

The X-ray luminosity used in this paper is that directly observed by Chandra6. This is likely

to be an underestimate for several reasons. The quoted X-rayluminosities only refer to the ob-

served flux∼> 0.5 keV. For a shock with a temperature of 0.35 keV most of the luminosity is

below this energy, especially if the shock is radiative, as is likely for shocks with velocities be-

low ∼ 400 km s−1 (ref. 3). In addition, the line profiles of the optical emission show that there
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are shocks of lower velocities, most likely tangential shocks38, which radiate mainly below the

observable X-ray band and add to the ionizing flux. The typical shock velocity from the optical

lines is∼ 200 km s−1 (ref. 5), which corresponds to a temperature of∼ 50 eV. Because the opacity

increases asE−3 (WhereE is the photon energy), the absorption efficiency of the ejecta of this low

energy radiation is nearly 100%. The absorbed X-rays are therefore more than enough to explain

the observed increase in the optical bands. A more accurate estimate of the spectral distribution

would require a detailed numerical calculation of the X-rayabsorption and thermalization, which

is beyond the scope of this paper. We also remark that both theoptical emission from the ring5 and

the mid-IR8 are strongly correlated with the X-rays.

The conversion from X-rays to optical emission takes place first by photoelectric absorption,

creating fast non-thermal electrons with energies up to keV. These are thermalized by excitation,

ionization and heating of the free, thermal electrons. For hydrogen at the relevant degree of ioniza-

tion, 35− 40% of the secondary electron energy goes into ionization, followed by recombination,

while∼ 8% goes into direct excitation ofn > 2 (refs 39, 40). At100−200 K, ∼ 9% of the ioniza-

tion energy and∼ 16% of the excitation energy emerges as Hα (ref. 41). In total this corresponds

to ∼ 5% of the X-ray energy. Other elements add to this. The relativeimportance of excitation,

ionization and heating will remain roughly constant as longas the ionization is∼< 10−2, and we

therefore do not expect conversion efficiency for the two bands to change over time. However,

once the ionization surpasses this value, the fraction going into heating increases at the expense of

the other channels. This will increase the far-IR fine structure lines compared to the optical lines

until the temperature is high enough for thermal effects to increase the optical/UV emission35, 36.
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4 Effects of dust and positron leakage in the ejecta

There is strong evidence for dust in the ejecta from early observations23,24,42, as well as from

observations discussed in this supplement. In principle, atransition from optically thick to optically

thin dust could account for an increase in the flux. This is, however, unlikely for several reasons.

First, it would be a strange coincidence that this would occur at the same time as the X-ray flux

becomes important. Secondly, compared to the flux from our model with constant covering fraction

(i.e. optically thick dust clumps), which is given by the dashed line in Fig. 3, the increase has to be

a factor of∼ 8 in the R-band and∼ 5 in the B-band. The estimated covering factor of the dust at

early times was∼ 0.5 (refs 23, 24), implying a maximum increase in the flux by a factor of ∼ 2.

Moreover, we expect the increase to occur first in the R-band and later in the B-band, based on the

higher extinction in the latter band. The imaging also indicates dust obscuration in the central part

of the SN up to the latest epochs (Supplementary Fig. 1), although this may also be an artefact of

the external X-ray illumination, as discussed in the main paper.

Finally, positron leakage from the Fe-rich material containing the44Ti may enhance the emis-

sion from the O- and H-rich zones in the core12. This depends sensitively on the strength of a

magnetic field in the ejecta, which is uncertain. The main effect of positron leakage is that the hy-

drogen and intermediate element lines would increase at theexpense of the Fe I-II lines. At most

this may enhance the emission in the observed bands by a factor of ∼ 2 compared to the complete

trapping case. As discussed above, this is far from sufficient to explain the observed increase in

the R- and B-bands.

13



5 Supplementary Figures

Supplementary Figure 1: Selection of HST images of SN 1987A.The images show the evolution

of the ejecta and the circumstellar ring as a function of time. The top row shows the R-band and the

bottom row shows the B-band. The observing dates are 1994-09-24 (a ande), 1999-04-21 (b and

f) , 2003-11-28 (c andg) and 2009-04-09 (d andh), which correspond to 2,770, 4,440, 6,122 and

8,101 days after the explosion, respectively. Note the expansion of the ejecta and the brightening

hot spots in the circumstellar ring.
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Supplementary Figure 2: Comparison of ejecta light curves for different apertures. Panela shows

the R-band and panelb shows the B-band (note the different scales on the y-axes). Data points from

WFPC2, ACS and WFC3 are shown as dots, triangles and stars, respectively. A correction factor

has been applied to the ACS and WFC3 fluxes in order to account for the differences between these

instruments and WFPC2. The red and blue data points correspond to the same expanding elliptical

aperture as in Fig. 2, shown here for reference. Green data points are for a fixed aperture that

encloses as much of the ejecta as possible (sma= 0.50′′, see also Fig. 1) while black data points

are for an expanding circular aperture with radius equal to the semi-major axis of the expanding

elliptical aperture. Open symbols indicate approximate flux levels after accounting for emission

from the circumstellar ring. The light curve from the fixed aperture clearly levels off at late times.

This is at least partly due to ejecta material expanding out of the aperture, but other effects may

also contribute.
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a b

Supplementary Figure 3: Example of the modelling of the ring. a, The HST/WFPC2 F675W

image from 2009-04-29. This is the same image as in Supplementary Fig. 1d but the image levels

have been adjusted to show the structure of the ring more clearly. As a result the ejecta appear very

faint. b, The model for the hot spots in the ring for the same epoch.
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Supplementary Figure 4: Comparison of the radial brightness profiles of the real data and the

model. The profiles were produced for the 2009-04-29 WFPC2/F675W observation (Supplemen-

tary Fig. 3), with the real data shown in black and the model inred. Specifically the lines show the

counts inside elliptical annuli aligned with the circumstellar ring as a function of the sma of the

annulus. The model clearly agrees well with the real data in the ring area (between about 0.6–1.0′′)

and should therefore give us a good estimate of the amount of flux from the ring that leaks into the

ejecta region.
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Supplementary Figure 5: STIS Hα profiles of the ejecta. The red and black lines are for a 0.2′′ slit

placed in the north-south direction and centred on the ejecta in 2004 and 2010, respectively. The

dashed blue line is the combined spectrum from three 0.2′′ slits placed next to each other in 2004,

renormalized to match the continuum level of the other spectra. The spectral extraction regions

were chosen to correspond as closely as possible to the size of the expanding elliptical aperture

used for the flux measurements in Fig. 2. The boxy part of the line profile between3, 000 and

9, 000 km s−1 is due to the reverse shock. There is also a contribution fromthe reverse shock on

the blue side, but this is harder to disentangle, because of blending with the [O I]λλ 6300, 6364

lines at−12, 022 km s−1 and−9, 096 km s−1.
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Supplementary Figure 6: Ejecta velocity corresponding to optical depthτ = 1. The optical depth

is measured from the ring as a function of energy at 10, 20 and 30 years after the explosion. The

maximum velocity for each of these curves is given by the ejecta velocity in the plane of the ring,

which is 2.1 × 104(t/10 yrs)−1 km s−1. Note the relatively small change in velocity with time

of τ(E) = 1 for energies∼> 0.2 keV. The FWHM of the line profiles are therefore expected to

decrease relatively slowly with time, as long as most of the shock energy is emitted above this

energy. Note also that at 30 years the full ejecta will be transparent at∼> 6 keV.
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Supplementary Figure 7: Fraction of the X-ray flux absorbed by the supernova ejecta as a function

of time. The different lines correspond to different photonenergies as indicated in the figure. The

main reason for the evolution is the increasing solid angle of the core as seen from the ring (∝ t2),

damped by the increasing transparency at higher energy.
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6 Supplementary Table

Date Instrument / Filter Exposure time Instrument / Filter Exposure time
(s) (s)

1994-09-24 WFPC2 / F675W 600 WFPC2 / F439W 800
1995-03-05 WFPC2 / F675W 600 WFPC2 / F439W 800
1996-02-06 WFPC2 / F675W 600 WFPC2 / F439W 950
1997-07-10 WFPC2 / F675W 600 WFPC2 / F439W 800
1998-02-06 WFPC2 / F675W 400 WFPC2 / F439W 500
1999-01-07 WFPC2 / F675W 1220 WFPC2 / F439W 1039
1999-04-21 WFPC2 / F675W 400 WFPC2 / F439W 800
2000-02-02 WFPC2 / F675W 400 WFPC2 / F439W 460
2000-06-16 WFPC2 / F675W 400 WFPC2 / F439W 800
2000-11-13 WFPC2 / F675W 2400 WFPC2 / F439W 1200
2001-03-23 WFPC2 / F675W 500 WFPC2 / F439W 1000
2001-12-07 WFPC2 / F675W 800 WFPC2 / F439W 1600
2003-01-05 ACS / F625W 800 ACS / F435W 1200
2003-08-12 ACS / F625W 480 ACS / F435W 800
2003-11-28 ACS / F625W 800 ACS / F435W 1600
2004-12-15 ACS / F435W 1600
2005-04-02 ACS / F435W 1200
2005-09-26 ACS / F625W 12000
2005-09-28 ACS / F625W 720
2006-04-15 ACS / F625W 1200 ACS / F435W 1200
2006-04-29 ACS / F625W 720
2006-12-06 ACS / F625W 1200 ACS / F435W 1800
2007-05-12 WFPC2 / F675W 2700 WFPC2 / F439W 3000
2008-02-19 WFPC2 / F675W 1600 WFPC2 / F439W 2400
2009-04-29 WFPC2 / F675W 1600 WFPC2 / F439W 2000
2009-12-12 WFC3 / F625W 3000 WFC3 / F438W 800

Supplementary Table 1:HST observations used for the analysis.
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