Multi-fidelity regression using a non-parametric relationship - SAM
Communication Dans Un Congrès Année : 2014

Multi-fidelity regression using a non-parametric relationship

Résumé

When the precision of the output of a heavy computer code can be tuned, it is possible to incorporate responses with different levels of fidelity to enhance the prediction of output of the most accurate simulation. This is usually done by adding several imprecise responses instead of a few precise ones. The main example for this type of computer experiments are the numerical solutions of differential equations. This problem has been studied by many authors, most notably by LeGratiet (2012) and Kennedy and O'Hagan (2001). In the present work, we propose a new approach that is different from the existing ones and based on a non-parametric relationship between two consecutive levels of fidelity.
Fichier principal
Vignette du fichier
MascotNum_multifidelity_zertuche.pdf (332.59 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01096661 , version 1 (17-12-2014)

Identifiants

  • HAL Id : hal-01096661 , version 1

Citer

Federico Zertuche, Celine Helbert, Anestis Antoniadis. Multi-fidelity regression using a non-parametric relationship. MASCOT 2014 - Méthodes d'Analyse Statistique pour les COdes et Traitements numériques, Apr 2014, Zurich, Switzerland. ⟨hal-01096661⟩
601 Consultations
185 Téléchargements

Partager

More