Pré-Publication, Document De Travail Année : 2025

Local decay and asymptotic profile for the damped wave equation in the asymptotically Euclidean setting

Rayan Fahs
  • Fonction : Auteur
  • PersonId : 1453169

Résumé

We prove local decay estimates for the wave equation in the asymptotically Euclidean setting. In even dimensions we go beyond the optimal decay by providing the large time asymptotic profile, given by a solution of the free wave equation. In odd dimensions, we improve the best known estimates. In particular, we get a decay rate that is better than what would be the optimal decay in even dimensions. The analysis mainly relies on a comparison of the corresponding resolvent with the resolvent of the free problem for low frequencies. Moreover, all the results hold for the damped wave equation with short range absorption index.
Fichier principal
Vignette du fichier
fahs-royer.pdf (515.18 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04907155 , version 1 (22-01-2025)

Identifiants

  • HAL Id : hal-04907155 , version 1

Citer

Rayan Fahs, Julien Royer. Local decay and asymptotic profile for the damped wave equation in the asymptotically Euclidean setting. 2025. ⟨hal-04907155⟩
0 Consultations
0 Téléchargements

Partager

More